m基于FPGA的FIR低通滤波器实现和FPGA频谱分析,包含testbench和滤波器系数MATLAB计算程序

简介: 在Vivado 2019.2平台上开发的系统,展示了数字低通滤波器和频谱分析的FPGA实现。仿真结果显示滤波效果良好,与MATLAB仿真结果一致。设计基于FPGA的FIR滤波器,利用并行处理和流水线技术提高效率。频谱分析通过离散傅里叶变换实现。提供了Verilog核心程序以示例模块工作原理。

1.算法仿真效果
本系统进行了Vivado2019.2平台的开发,Vivado2019.2仿真结果如下:

整体仿真结果如下:

d68b7af5de2e45e7e25790d4ec7a46c9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

放大看,滤波效果如下:

bd6327e6b4b5f83d2c587afd67f5e5f0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

对应的频谱如下:
2a3734e0027c556d7a4b98166e1157d8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

FPGA的RTL结构如下:

7184ead18957cbe890acb0f0e36f5740_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

最后用matlab对比仿真,结果如下:

3e441e92d90b807313f51c5c5301b588_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
4ef7d9fad8d5ae7f1b1ad2f229ebfe6f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

可以看到,FPGA的滤波效果和频谱分析与matlab的结果一致。

2.算法涉及理论知识概要
基于FPGA(Field-Programmable Gate Array,现场可编程门阵列)的数字低通滤波器实现和FPGA频谱分析是数字信号处理领域的重要应用,广泛应用于通信、音频处理、图像处理等多个行业。数字低通滤波器旨在允许低频信号通过而衰减高频信号,是信号处理中基础且重要的组件之一。其设计通常基于时域采样定理和滤波器设计理论,常见的实现方法有IIR(无限脉冲响应)滤波器和FIR(有限脉冲响应)滤波器。

b24d59579f29c43528f4e4f3876544ee_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   在FPGA上实现FIR滤波器,主要通过配置硬件逻辑资源(如查找表LUTs、触发器等)来实现上述卷积运算。具体步骤包括:

系数存储:滤波器系数h[k]被存储在FPGA的块RAM中。
并行处理:利用FPGA的并行处理能力,将输入信号序列分块处理,每一块与滤波器系数进行并行卷积。
流水线设计:为了提高处理速度,设计中通常采用流水线技术,即每个运算步骤在不同的时钟周期完成,从而实现连续数据流处理。
频谱分析是将信号从时域转换到频域,以观察其频率组成的技术。在FPGA上实现频谱分析,最常见的方式是使用离散傅里叶变换(DFT)或其快速版本——快速傅里叶变换(FFT)。

4883fb81cc8dcddb2faa0c25c54e78e7_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.Verilog核心程序
````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2024/05/27 21:38:45
// Design Name:
// Module Name: test
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module test();

reg i_clk;
reg i_rst;
wire signed[15:0]o_x;
wire signed[15:0]o_y;
reg i_before_fft1;
reg i_last_fft1;
reg i_enable1;
wire o_enable1;
wire o_enable2;
wire signed[63:0]o_abs_ifft1;
wire signed[63:0]o_abs_ifft2;

tops tops_U(
.i_clk (i_clk),
.i_rst (i_rst),
.o_x (o_x),
.o_y (o_y),
.i_before_fft1 (i_before_fft1),
.i_last_fft1 (i_last_fft1),
.i_enable1 (i_enable1),
.o_enable1 (o_enable1),
.o_enable2 (o_enable2),
.o_abs_ifft1 (o_abs_ifft1),
.o_abs_ifft2 (o_abs_ifft2)
);

initial
begin
i_clk=1'b1;
i_rst=1'b1;

100

i_rst = 1'b0;
end
always #5 i_clk=~i_clk;
reg [19:0]cnts2;
always @(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
cnts2 <= 20'd0;
i_before_fft1<=1'b0;
i_enable1 <=1'b0;
i_last_fft1 <=1'b0;
end
else begin
if(cnts2==20'd25000)
cnts2 <= cnts2;
else
cnts2 <= cnts2 + 20'd1;
if(cnts2==20'd0)
begin
i_before_fft1<=1'b1;
i_enable1 <=1'b0;
i_last_fft1 <=1'b0;
end
if(cnts2==20'd1)
begin
i_before_fft1<=1'b1;
i_enable1 <=1'b0;
i_last_fft1 <=1'b0;
end
if(cnts2==20'd2)
begin
i_before_fft1<=1'b1;
i_enable1 <=1'b0;
i_last_fft1 <=1'b0;
end
if(cnts2==20'd3)
begin
i_before_fft1<=1'b1;
i_enable1 <=1'b0;
i_last_fft1 <=1'b0;
end

      if(cnts2==20'd4)
      begin
         i_before_fft1<=1'b0;
         i_enable1    <=1'b0;
         i_last_fft1  <=1'b0;
      end
      if(cnts2>=20'd5 & cnts2<=20'd4+2047)
      begin
         i_before_fft1<=1'b0;
         i_enable1    <=1'b1;
         i_last_fft1  <=1'b0;
      end

      if(cnts2==20'd4+2048)
      begin
         i_before_fft1<=1'b0;
         i_enable1    <=1'b1;
         i_last_fft1  <=1'b1;
      end

      if(cnts2>20'd4+2048)
      begin
         i_before_fft1<=1'b0;
         i_enable1    <=1'b0;
         i_last_fft1  <=1'b0;
      end



 end

end

endmodule
00_065m
```

相关文章
|
1月前
|
机器学习/深度学习 算法 异构计算
m基于FPGA的多通道FIR滤波器verilog实现,包含testbench测试文件
本文介绍了使用VIVADO 2019.2仿真的多通道FIR滤波器设计。展示了系统RTL结构图,并简述了FIR滤波器的基本理论,包括单通道和多通道的概念、常见结构及设计方法,如窗函数法、频率采样法、优化算法和机器学习方法。此外,还提供了Verilog核心程序代码,用于实现4通道滤波器模块,包含时钟、复位信号及输入输出接口的定义。
72 7
|
1月前
|
存储 算法 计算机视觉
FPGA上实现低通滤波器
FPGA上实现低通滤波器
|
1月前
|
编解码 算法 异构计算
基于FPGA的NC图像质量评估verilog实现,包含testbench和MATLAB辅助验证程序
在Vivado 2019.2和Matlab 2022a中测试的图像质量评估算法展示了效果。该算法基于NC指标,衡量图像与原始图像的相似度,关注分辨率、色彩深度和失真。提供的Verilog代码段用于读取并比较两个BMP文件,计算NC值。
|
1月前
|
算法 TensorFlow 算法框架/工具
基于直方图的图像阈值计算和分割算法FPGA实现,包含tb测试文件和MATLAB辅助验证
这是一个关于图像处理的算法实现摘要,主要包括四部分:展示了四张算法运行的效果图;提到了使用的软件版本为VIVADO 2019.2和matlab 2022a;介绍了算法理论,即基于直方图的图像阈值分割,通过灰度直方图分布选取阈值来区分图像区域;并提供了部分Verilog代码,该代码读取图像数据,进行处理,并输出结果到&quot;result.txt&quot;以供MATLAB显示图像分割效果。
|
1月前
|
存储 算法 算法框架/工具
基于HSV色度空间的图像深度信息提取算法FPGA实现,包含testbench和MATLAB辅助验证程序
该文档介绍了在一个FPGA项目中使用HSV色彩模型提取图像深度信息的过程。通过将RGB图像转换为HSV,然后利用明度与深度的非线性映射估计深度。软件版本为Vivado 2019.2和MATLAB 2022a。算法在MATLAB中进行了对比测试,并在FPGA上实现了优化,包括流水线并行处理和查找表技术。提供的Verilog代码段展示了RGB到灰度的转换。实验结果和核心程序的图片未显示。
|
1月前
|
存储 异构计算
在FPGA上实现高通滤波器
在FPGA上实现高通滤波器
|
5天前
|
传感器 算法
ANC主动降噪理论及Matlab代码实现
ANC主动降噪理论及Matlab代码实现
|
1月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
1月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章