m基于FPGA的FIR低通滤波器实现和FPGA频谱分析,包含testbench和滤波器系数MATLAB计算程序

简介: 在Vivado 2019.2平台上开发的系统,展示了数字低通滤波器和频谱分析的FPGA实现。仿真结果显示滤波效果良好,与MATLAB仿真结果一致。设计基于FPGA的FIR滤波器,利用并行处理和流水线技术提高效率。频谱分析通过离散傅里叶变换实现。提供了Verilog核心程序以示例模块工作原理。

1.算法仿真效果
本系统进行了Vivado2019.2平台的开发,Vivado2019.2仿真结果如下:

整体仿真结果如下:

d68b7af5de2e45e7e25790d4ec7a46c9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

放大看,滤波效果如下:

bd6327e6b4b5f83d2c587afd67f5e5f0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

对应的频谱如下:
2a3734e0027c556d7a4b98166e1157d8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

FPGA的RTL结构如下:

7184ead18957cbe890acb0f0e36f5740_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

最后用matlab对比仿真,结果如下:

3e441e92d90b807313f51c5c5301b588_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
4ef7d9fad8d5ae7f1b1ad2f229ebfe6f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

可以看到,FPGA的滤波效果和频谱分析与matlab的结果一致。

2.算法涉及理论知识概要
基于FPGA(Field-Programmable Gate Array,现场可编程门阵列)的数字低通滤波器实现和FPGA频谱分析是数字信号处理领域的重要应用,广泛应用于通信、音频处理、图像处理等多个行业。数字低通滤波器旨在允许低频信号通过而衰减高频信号,是信号处理中基础且重要的组件之一。其设计通常基于时域采样定理和滤波器设计理论,常见的实现方法有IIR(无限脉冲响应)滤波器和FIR(有限脉冲响应)滤波器。

b24d59579f29c43528f4e4f3876544ee_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   在FPGA上实现FIR滤波器,主要通过配置硬件逻辑资源(如查找表LUTs、触发器等)来实现上述卷积运算。具体步骤包括:

系数存储:滤波器系数h[k]被存储在FPGA的块RAM中。
并行处理:利用FPGA的并行处理能力,将输入信号序列分块处理,每一块与滤波器系数进行并行卷积。
流水线设计:为了提高处理速度,设计中通常采用流水线技术,即每个运算步骤在不同的时钟周期完成,从而实现连续数据流处理。
频谱分析是将信号从时域转换到频域,以观察其频率组成的技术。在FPGA上实现频谱分析,最常见的方式是使用离散傅里叶变换(DFT)或其快速版本——快速傅里叶变换(FFT)。

4883fb81cc8dcddb2faa0c25c54e78e7_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.Verilog核心程序
````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2024/05/27 21:38:45
// Design Name:
// Module Name: test
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module test();

reg i_clk;
reg i_rst;
wire signed[15:0]o_x;
wire signed[15:0]o_y;
reg i_before_fft1;
reg i_last_fft1;
reg i_enable1;
wire o_enable1;
wire o_enable2;
wire signed[63:0]o_abs_ifft1;
wire signed[63:0]o_abs_ifft2;

tops tops_U(
.i_clk (i_clk),
.i_rst (i_rst),
.o_x (o_x),
.o_y (o_y),
.i_before_fft1 (i_before_fft1),
.i_last_fft1 (i_last_fft1),
.i_enable1 (i_enable1),
.o_enable1 (o_enable1),
.o_enable2 (o_enable2),
.o_abs_ifft1 (o_abs_ifft1),
.o_abs_ifft2 (o_abs_ifft2)
);

initial
begin
i_clk=1'b1;
i_rst=1'b1;

100

i_rst = 1'b0;
end
always #5 i_clk=~i_clk;
reg [19:0]cnts2;
always @(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
cnts2 <= 20'd0;
i_before_fft1<=1'b0;
i_enable1 <=1'b0;
i_last_fft1 <=1'b0;
end
else begin
if(cnts2==20'd25000)
cnts2 <= cnts2;
else
cnts2 <= cnts2 + 20'd1;
if(cnts2==20'd0)
begin
i_before_fft1<=1'b1;
i_enable1 <=1'b0;
i_last_fft1 <=1'b0;
end
if(cnts2==20'd1)
begin
i_before_fft1<=1'b1;
i_enable1 <=1'b0;
i_last_fft1 <=1'b0;
end
if(cnts2==20'd2)
begin
i_before_fft1<=1'b1;
i_enable1 <=1'b0;
i_last_fft1 <=1'b0;
end
if(cnts2==20'd3)
begin
i_before_fft1<=1'b1;
i_enable1 <=1'b0;
i_last_fft1 <=1'b0;
end

      if(cnts2==20'd4)
      begin
         i_before_fft1<=1'b0;
         i_enable1    <=1'b0;
         i_last_fft1  <=1'b0;
      end
      if(cnts2>=20'd5 & cnts2<=20'd4+2047)
      begin
         i_before_fft1<=1'b0;
         i_enable1    <=1'b1;
         i_last_fft1  <=1'b0;
      end

      if(cnts2==20'd4+2048)
      begin
         i_before_fft1<=1'b0;
         i_enable1    <=1'b1;
         i_last_fft1  <=1'b1;
      end

      if(cnts2>20'd4+2048)
      begin
         i_before_fft1<=1'b0;
         i_enable1    <=1'b0;
         i_last_fft1  <=1'b0;
      end



 end

end

endmodule
00_065m
```

相关文章
|
2月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
132 6
|
2月前
|
机器学习/深度学习 编解码 并行计算
【改进引导滤波器】各向异性引导滤波器,利用加权平均来实现最大扩散,同时保持图像中的强边缘,实现强各向异性滤波,同时保持原始引导滤波器的低低计算成本(Matlab代码实现)
【改进引导滤波器】各向异性引导滤波器,利用加权平均来实现最大扩散,同时保持图像中的强边缘,实现强各向异性滤波,同时保持原始引导滤波器的低低计算成本(Matlab代码实现)
205 8
|
2月前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
232 1
|
2月前
|
机器学习/深度学习 算法 语音技术
【语音分离】通过分析信号的FFT,根据音频使用合适的滤波器进行语音信号分离(Matlab代码实现)
【语音分离】通过分析信号的FFT,根据音频使用合适的滤波器进行语音信号分离(Matlab代码实现)
124 4
|
2月前
|
传感器 算法 数据可视化
【卡尔曼滤波跟踪】跟踪目标的轨迹,并将滤波器输出与原始轨迹进行比较(Matlab实现)
【卡尔曼滤波跟踪】跟踪目标的轨迹,并将滤波器输出与原始轨迹进行比较(Matlab实现)
185 4
|
2月前
|
存储 算法 生物认证
基于Zhang-Suen算法的图像细化处理FPGA实现,包含testbench和matlab验证程序
本项目基于Zhang-Suen算法实现图像细化处理,支持FPGA与MATLAB双平台验证。通过对比,FPGA细化效果与MATLAB一致,可有效减少图像数据量,便于后续识别与矢量化处理。算法适用于字符识别、指纹识别等领域,配套完整仿真代码及操作说明。
|
7月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于FPGA的SNN脉冲神经网络之LIF神经元verilog实现,包含testbench
本项目展示了 LIF(Leaky Integrate-and-Fire)神经元算法的实现与应用,含无水印运行效果预览。基于 Vivado2019.2 开发,完整代码配有中文注释及操作视频。LIF 模型模拟生物神经元特性,通过积分输入信号并判断膜电位是否达阈值产生脉冲,相较于 Hodgkin-Huxley 模型更简化,适合大规模神经网络模拟。核心程序片段示例,助您快速上手。
|
10月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的变步长LMS自适应滤波器verilog实现,包括testbench
### 自适应滤波器仿真与实现简介 本项目基于Vivado2022a实现了变步长LMS自适应滤波器的FPGA设计。通过动态调整步长因子,该滤波器在收敛速度和稳态误差之间取得良好平衡,适用于信道均衡、噪声消除等信号处理应用。Verilog代码展示了关键模块如延迟单元和LMS更新逻辑。仿真结果验证了算法的有效性,具体操作可参考配套视频。
371 74
|
8月前
|
算法 数据安全/隐私保护 异构计算
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。

热门文章

最新文章