基于WSN网络的定向步幻影路由算法matlab仿真

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 该文探讨了无线传感器网络中的位置隐私保护,对比了NDRW路由与定向步幻影路由在安全时间和能耗方面的性能。在MATLAB2022a中进行测试,结果显示NDRW路由提供最长的安全时间,尤其在长距离传输时,且在近距离下能耗低于幻影路由。幻影路由虽消耗更多能量,但通过随机步创造幻影源以增强安全性。NDRW路由利用非确定性随机游走策略,避免拥堵并提高效率,而幻影路由则引入方向性控制,通过启发式算法优化路径选择。

1.程序功能描述
系统设计背景技术介绍与现状简介:现在是信息爆炸的一个时代,因此对于个人的隐私以及信息的隐私保护都应该被实时重视着的问题;无线传感器网络其所采用的无线多跳通信方式易收到攻击者的攻击,引发严重的位置隐私泄露问题。在本课题中,我们将对比NDRW路由和定向步幻影路由。对比对应的安全时间和能耗。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

547192a0d934f869277fa60edb7f8520_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

   安全时间指的是在攻击者成功找到源位置之前,源节点传输的数据包个数。图5是对于不同的源节点到汇聚节点的距离,进行100次的反向追踪实验得到的平均结果。显然,最短路径路由的安全时间是最小的.因为它的传输路径是固定不变的,所以攻击者很容易就能定位源节点。幻影路由通过定向随机步制造随机的幻影源,避免真实源位置被攻击者发现,所以能比最短路径路由提供更长的安全时间。NDRW路由的安全时间最大,因为在NDRW路由中数据包的传输路径在动态的变化,而且数据包传输过程中避免连续使用相同的节点,攻击者就不可能连续偷听到数据包传输,而不得不在同一个节点等待更长的时间。同时图5显示随着源节点与汇聚节点之间距离的增大,NDRW的安全时间迅速增加,显示了其优势。

1839e67fc17061ab35151fc2bf1696e3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

   通信开销即为节点转发数据包的次数,幻影路由消耗了较多的能量,因为幻影路由在制造幻影源的随机步阶段要消耗额外的能量。当源节点与汇聚节点之间距离比较小时,NDRW路由的能量消耗要小于幻影路由,因为幻影路由在随机步阶段有可能把数据包传往远离汇聚节点的方向,而NDRW路由中节点只会把数据包转发给近邻居和等邻居节点。

3.核心程序
```for ij = 1:length(dst)
ij
for k = 1:1000
rng(k);
X = SCALErand(1,Node);
Y = SCALE
rand(1,Node);
%基站位置
X0 = 2000;
Y0 = 2000;
X = [X,X0];
Y = [Y,Y0];
dmatrix= zeros(Node,Node);

    for i = 1:Node+1 
        for j = 1:Node+1 

Dist = sqrt((X(i) - X(j))^2 + (Y(i) - Y(j))^2);
%a link;
if Dist<= Radius
dmatrix(i,j) = Dist;
else
dmatrix(i,j) = inf;
end;
end;
end;
%计算当前距离下可能的源节点
Dist2=[];
for i = 1:Node
Dist2(i) = abs(sqrt((X(i) - X(end))^2 + (Y(i) - Y(end))^2)-dst(ij));
end
[dd,Node_indx] = min(Dist2);
Sn = Nodeindx; %源位置
En = Node+1; %汇聚节点
%%
%定向步幻影路
%基于跳数的定向随机步路由hwalk
Dist2= [];
indx = [];
for i = 1:Node
Dist2(i) = abs(sqrt((X(i) - X(Sn))^2 + (Y(i) - Y(Sn))^2));
if Dist2(i) <= Radius & Dist2(i) > 0
indx = [indx,i];
end
end
%随机12
Index2 = randperm(length(indx));
Index2
= indx(Index2(1:min(hwalk,length(Index2))));
%段是最短路径路
[paths,costs] = funcdijkstra(Index2(end),En,dmatrix);
path_distance = 0;
for d=2:length(paths)
path_distance = path_distance + dmatrix(paths(d-1),paths(d));
end
%安全时间
Time1(k,ij) = package_speedlength(paths);
%能量消耗
E1(k,ij) = Energy
path_distance;
end
end
12_039m

```

4.本算法原理
NDRW(Non-Deterministic Random Walk)路由和定向步幻影路由(Directed Phantom Routing。系统设计背景技术介绍与现状简介:现在是信息爆炸的一个时代,因此对于个人的隐私以及信息的隐私保护都应该被实时重视着的问题;无线传感器网络其所采用的无线多跳通信方式易收到攻击者的攻击,引发严重的位置隐私泄露问题。而源节点处往往会产生相对重要的信息,若源节点被发现,则网络信息隐私将收到巨大威胁,因此针对源节点的位置隐私保护技术对于传感器网络的大规模应用具有重要意义。

4.1 NDRW路由原理
NDRW,即非确定性随机游走,是一种在图或网络中寻找路径的方法,它不总是选择最短或最优路径,而是允许一定程度上的随机性。这种随机性有助于避免网络中的拥塞区域,提高数据传输的效率和鲁棒性。

   在数学上,随机游走可以描述为一个马尔可夫链。设(G = (V, E))为一个图,其中(V)是顶点集,(E)是边集。每个顶点(v \in V)代表一个网络节点,每条边(e \in E)代表节点之间的连接。在每一步,游走者(例如数据包)根据一定的转移概率(P(v, u))从当前节点(v)移动到相邻节点(u)。转移概率矩阵(P)通常基于网络的拓扑结构和当前的交通状况来动态计算。

    然而,在NDRW中,转移概率可能不仅仅基于节点的度,还可能基于其他因素,如边的权重、节点的拥塞程度等。这些因素可以通过调整转移概率来反映。

4.2 定向步幻影路由原理
定向步幻影路由(以下简称为“幻影路由”)可以看作是对NDRW的一种改进或变种,它引入了更多的方向性和控制性。在幻影路由中,数据包不仅随机选择路径,而且还在一定程度上被“引导”向特定的方向或目标。

   为了实现这种引导,幻影路由可能会使用一种或多种启发式算法来动态计算转移概率。例如,启发式算法可以考虑以下因素:

目标距离:数据包离其最终目标的距离。
节点拥塞:节点的当前负载或拥塞程度。
路径多样性:为了增加网络的鲁棒性,算法可能会倾向于选择不同于之前走过的路径。

相关文章
|
3天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
4天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
6天前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
237 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
143 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
112 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
8月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)