Python执行PG数据库查询语句:以Markdown格式打印查询结果

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: 使用Python的`psycopg2`和`pandas`库与PostgreSQL交互,执行查询并以Markdown格式打印结果。首先确保安装所需库:`pip install psycopg2 pandas`。接着建立数据库连接,执行查询,将查询结果转换为DataFrame,再用`tabulate`库将DataFrame格式化为Markdown。代码示例包括连接函数、查询函数、转换和打印函数。最后限制列宽以适应输出。

哈喽,大家好,我是木头左!

1. 准备工作

在开始之前,需要确保已经安装了psycopg2pandas这两个Python库。psycopg2是Python的一个PostgreSQL数据库适配器,用于连接和操作PostgreSQL数据库。而pandas则是一个强大的数据处理库,将用它来处理查询结果并以Markdown格式打印。

pip install psycopg2 pandas
AI 代码解读

2. 建立数据库连接

需要使用psycopg2库来连接到PostgreSQL数据库。这需要数据库的地址、端口、数据库名、用户名和密码。

import psycopg2

def create_conn():
    conn = psycopg2.connect(
        host="your_host",
        database="your_database",
        user="your_user",
        password="your_password"
    )
    return conn
AI 代码解读

3. 执行查询语句

接下来,需要执行一个查询语句。在这个例子中,假设要查询的表名为your_table,并且希望获取该表的所有数据。

def execute_query(conn):
    cur = conn.cursor()
    cur.execute("SELECT * FROM your_table")
    rows = cur.fetchall()
    return rows
AI 代码解读

4. 将查询结果转换为DataFrame

现在,需要将查询结果转换为pandasDataFrame对象,以便可以更方便地处理数据。

import pandas as pd

def rows_to_dataframe(rows):
    df = pd.DataFrame(rows, columns=[desc[0] for desc in cur.description])
    return df
AI 代码解读

5. 以Markdown格式打印查询结果

需要将DataFrame对象以Markdown格式打印出来。这里使用tabulate库,它可以将DataFrame对象转换为各种文本格式,包括Markdown。

from tabulate import tabulate

def print_dataframe(df):
    print(tabulate(df, headers='keys', tablefmt='pipe', showindex=False))
AI 代码解读

6. 主函数

现在可以将以上的所有步骤放在一个主函数中,然后调用这个函数来执行查询并打印结果。

def main():
    conn = create_conn()
    rows = execute_query(conn)
    df = rows_to_dataframe(rows)
    print_dataframe(df)
AI 代码解读

7. 限制列宽

为了确保每一列只显示前100个字符,可以在print_dataframe函数中添加一些代码来实现这个功能。

def print_dataframe(df):
    for col in df.columns:
        max_length = min(100, len(max(df[col].astype(str), key=len)))
        df[col] = df[col].apply(lambda x: str(x)[:max_length])
    print(tabulate(df, headers='keys', tablefmt='pipe', showindex=False))
AI 代码解读

结语

以上就是如何使用Python执行PostgreSQL数据库查询语句,并将查询结果以Markdown格式打印出来的方法。希望对你有所帮助!

我是木头左,感谢各位童鞋的点赞、收藏,我们下期更精彩!

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
相关文章
【Azure Developer】分享两段Python代码处理表格(CSV格式)数据 : 根据每列的内容生成SQL语句
本文介绍了使用Python Pandas处理数据收集任务中格式不统一的问题。针对两种情况:服务名对应多人拥有状态(1/0表示),以及服务名与人名重复列的情况,分别采用双层for循环和字典数据结构实现数据转换,最终生成Name对应的Services列表(逗号分隔)。此方法高效解决大量数据的人工处理难题,减少错误并提升效率。文中附带代码示例及执行结果截图,便于理解和实践。
【YashanDB知识库】python驱动查询gbk字符集崖山数据库CLOB字段,数据被驱动截断
【YashanDB知识库】python驱动查询gbk字符集崖山数据库CLOB字段,数据被驱动截断
云数据库实战:基于阿里云RDS的Python应用开发与优化
在互联网时代,数据驱动的应用已成为企业竞争力的核心。阿里云RDS为开发者提供稳定高效的数据库托管服务,支持多种数据库引擎,具备自动化管理、高可用性和弹性扩展等优势。本文通过Python应用案例,从零开始搭建基于阿里云RDS的数据库应用,详细演示连接、CRUD操作及性能优化与安全管理实践,帮助读者快速上手并提升应用性能。
Zerox:AI驱动的万能OCR工具,精准识别复杂布局并输出Markdown格式,支持PDF、DOCX、图片等多种文件格式
Zerox 是一款开源的本地化高精度OCR工具,基于GPT-4o-mini模型,支持PDF、DOCX、图片等多种格式文件,能够零样本识别复杂布局文档,输出Markdown格式结果。
289 4
Zerox:AI驱动的万能OCR工具,精准识别复杂布局并输出Markdown格式,支持PDF、DOCX、图片等多种文件格式
Vision Parse:开源的 PDF 转 Markdown 工具,结合视觉语言模型和 OCR,识别文本和表格并保持原格式
Vision Parse 是一款开源的 PDF 转 Markdown 工具,基于视觉语言模型,能够智能识别和提取 PDF 中的文本和表格,并保持原有格式和结构。
472 19
Vision Parse:开源的 PDF 转 Markdown 工具,结合视觉语言模型和 OCR,识别文本和表格并保持原格式
MarkItDown:微软开源的多格式转Markdown工具,支持将PDF、Word、图像和音频等文件转换为Markdown格式
MarkItDown 是微软开源的多功能文档转换工具,支持将 PDF、PPT、Word、Excel、图像、音频等多种格式的文件转换为 Markdown 格式,具备 OCR 文字识别、语音转文字和元数据提取等功能。
689 9
MarkItDown:微软开源的多格式转Markdown工具,支持将PDF、Word、图像和音频等文件转换为Markdown格式
利用阿里云GPU加速服务器实现pdf转换为markdown格式
随着AI模型的发展,GPU需求日益增长,尤其是个人学习和研究。直接购置硬件成本高且更新快,建议选择阿里云等提供的GPU加速型服务器。
利用阿里云GPU加速服务器实现pdf转换为markdown格式
python脚本:连接数据库,检查直播流是否可用
【10月更文挑战第13天】本脚本使用 `mysql-connector-python` 连接MySQL数据库,检查 `live_streams` 表中每个直播流URL的可用性。通过 `requests` 库发送HTTP请求,输出每个URL的检查结果。需安装 `mysql-connector-python` 和 `requests` 库,并配置数据库连接参数。
159 68
Python处理数据库:MySQL与SQLite详解 | python小知识
本文详细介绍了如何使用Python操作MySQL和SQLite数据库,包括安装必要的库、连接数据库、执行增删改查等基本操作,适合初学者快速上手。
538 15

热门文章

最新文章