数据结构和算法学习记录——设计循环队列(数组实现循环队列)核心思路、题解过程、完整题解

简介: 数据结构和算法学习记录——设计循环队列(数组实现循环队列)核心思路、题解过程、完整题解

题目描述

设计你的循环队列实现。 循环队列是一种线性数据结构,其操作表现基于 FIFO(先进先出)原则并且队尾被连接在队首之后以形成一个循环。它也被称为“环形缓冲器”。


循环队列的一个好处是我们可以利用这个队列之前用过的空间。在一个普通队列里,一旦一个队列满了,我们就不能插入下一个元素,即使在队列前面仍有空间。但是使用循环队列,我们能使用这些空间去存储新的值。


你的实现应该支持如下操作:


  • MyCircularQueue(k): 构造器,设置队列长度为 k 。
  • Front: 从队首获取元素。如果队列为空,返回 -1 。
  • Rear: 获取队尾元素。如果队列为空,返回 -1 。
  • enQueue(value): 向循环队列插入一个元素。如果成功插入则返回真。
  • deQueue(): 从循环队列中删除一个元素。如果成功删除则返回真。
  • isEmpty(): 检查循环队列是否为空。
  • isFull(): 检查循环队列是否已满。

题目示例

MyCircularQueue circularQueue = new MyCircularQueue(3); // 设置长度为 3

circularQueue.enQueue(1);  // 返回 true

circularQueue.enQueue(2);  // 返回 true

circularQueue.enQueue(3);  // 返回 true

circularQueue.enQueue(4);  // 返回 false,队列已满

circularQueue.Rear();  // 返回 3

circularQueue.isFull();  // 返回 true

circularQueue.deQueue();  // 返回 true

circularQueue.enQueue(4);  // 返回 true

circularQueue.Rear();  // 返回 4

核心思路

循环队列可以用链表实现,也可以用数组实现。

链表实现

数组实现

重点

无论使用数组实现还是链表实现,循环队列都是需要多开一个空间。也就是说,当我们需要存n个数据,那使用循环队列的话,就要开n+1个空间,否则无法判断队列为空以及队列为满。

head指向头,tail指向尾,n表示循环队列能存储多少个数据。

数组循环列队

判空条件:head == tail

判满条件:head == (tail+1) %(n+ 1)


判满条件:head == (tail+1) %(n+ 1)



(例如:一个循环队列能存储3个数据,那么它循环队列满的情况下,tail指向的位置就是第五个,下标为3; (3(tail) + 1) % (3(n) + 1)) = 0 == head)

链表循环队列

判空条件:head == tail

判满条件:head == tail-> next

题解过程

数组实现

结构体类型定义

因为循环队列的大小题目要求中是在创建队列函数中进行malloc的,所以我们设计结构体时,就创建指针变量,用于后面存储函数中malloc的地址;创建两个下标,分别指向头和尾;创建一个变量记录循环队列的存储容量。

typedef struct
{
    int * a;
    int head;
    int tail;
    int k;
} MyCircularQueue;

创建一个循环队列并初始化

先开辟一个循环队列结构体大小的空间,再开辟循环队列结构体内部数组大小的空间;并进行初始化。

MyCircularQueue* myCircularQueueCreate(int k)
{
    MyCircularQueue* cq = (MyCircularQueue*)malloc(sizeof(MyCircularQueue));
    cq->a = (int*)malloc(sizeof(int) * (k + 1));
    cq->head = cq->tail = 0;
    cq->k = k;
 
    return cq;
}

判断循环队列为空或为满

根据前面判空判满的条件直接写即可

bool myCircularQueueIsEmpty(MyCircularQueue* obj)
{
    return obj->head == obj->tail;
}

入队列函数

判断队列是否为满,为满的话直接返回false;不为满则插入数据后,++tail,同时++tail时会有两种情况:

bool myCircularQueueEnQueue(MyCircularQueue* obj, int value)
{
    if(myCircularQueueIsFull(obj))
        return false;
    obj->a[obj->tail] = value;
    (obj->tail)++;
    obj->tail %= (obj->k+1);
 
    return true;
}

出队列函数

思路与入队列是一致的,只不过移动的从tail变成head,换成用head来操作即可。

bool myCircularQueueDeQueue(MyCircularQueue* obj)
{
    if(myCircularQueueIsEmpty(obj))
        return false;
    (obj->head)++;
    obj->head %= (obj->k+1);
    return true;
}

取队头数据

取队头很简单,head指向的就是队头的数据。注意题目要求:循环队列为空的话就返回-1。

int myCircularQueueFront(MyCircularQueue* obj)
{
    if(myCircularQueueIsEmpty(obj))
        return -1;
    else
        return obj->a[obj->head];
}

取队尾数据

取队尾会有两种情况:

情况二可以有两种解决方法:

  1. 判断 当tail == 0时,取数组下标为n的数据
  2. 作统一计算处理,建立一个下标变量i,i = (tail + n)%(n+1)。取下标为i的数据即为队尾数据。 例:取情况一的队尾-> i = (3 + 3) % (3 + 1) = 2,下标为2的数据正是队尾数据[3]; 再取情况二的队尾-> i = (0 + 3) % (3 + 1) = 3,下标为3的数据正是队尾数据[4]。
//第一种
// int myCircularQueueRear(MyCircularQueue* obj)
// {
//     if(myCircularQueueIsEmpty(obj))
//         return -1;
 
//     if(obj->tail == 0)
//         return obj->a[obj->l];
//     else
//         return obj->a[obj->tail-1];
// }
//第二种
int myCircularQueueRear(MyCircularQueue* obj)
{
    if(myCircularQueueIsEmpty(obj))
        return -1;
    else
    {
        int i = ((obj->tail)+(obj->k)) % ((obj->k)+1);
        return obj->a[i];
    }
  
}

销毁循环队列

注意是有两层的空间需要free,由内到外free即可。

void myCircularQueueFree(MyCircularQueue* obj)
{
    free(obj->a);
    free(obj);
}

完整题解

typedef struct
{
    int * a;
    int head;
    int tail;
    int k;
} MyCircularQueue;
 
 
MyCircularQueue* myCircularQueueCreate(int k)
{
    MyCircularQueue* cq = (MyCircularQueue*)malloc(sizeof(MyCircularQueue));
    cq->a = (int*)malloc(sizeof(int) * (k + 1));
    cq->head = cq->tail = 0;
    cq->k = k;
 
    return cq;
}
bool myCircularQueueIsEmpty(MyCircularQueue* obj)
{
    return obj->head == obj->tail;
}
 
bool myCircularQueueIsFull(MyCircularQueue* obj)
{
    return (obj->tail+1) % (obj->k+1) == obj->head;
}
 
 
bool myCircularQueueEnQueue(MyCircularQueue* obj, int value)
{
    if(myCircularQueueIsFull(obj))
        return false;
    obj->a[obj->tail] = value;
    (obj->tail)++;
    obj->tail %= (obj->k+1);
 
    return true;
}
 
bool myCircularQueueDeQueue(MyCircularQueue* obj)
{
    if(myCircularQueueIsEmpty(obj))
        return false;
    (obj->head)++;
    obj->head %= (obj->k+1);
    return true;
}
 
int myCircularQueueFront(MyCircularQueue* obj)
{
    if(myCircularQueueIsEmpty(obj))
        return -1;
    else
        return obj->a[obj->head];
}
 
//第一种
// int myCircularQueueRear(MyCircularQueue* obj)
// {
//     if(myCircularQueueIsEmpty(obj))
//         return -1;
 
//     if(obj->tail == 0)
//         return obj->a[obj->l];
//     else
//         return obj->a[obj->tail-1];
// }
//第二种
int myCircularQueueRear(MyCircularQueue* obj)
{
    if(myCircularQueueIsEmpty(obj))
        return -1;
    else
    {
        int i = ((obj->tail)+(obj->k)) % ((obj->k)+1);
        return obj->a[i];
    }
  
}
 
 
void myCircularQueueFree(MyCircularQueue* obj)
{
    free(obj->a);
    free(obj);
}
 
/**
 * Your MyCircularQueue struct will be instantiated and called as such:
 * MyCircularQueue* obj = myCircularQueueCreate(k);
 * bool param_1 = myCircularQueueEnQueue(obj, value);
 
 * bool param_2 = myCircularQueueDeQueue(obj);
 
 * int param_3 = myCircularQueueFront(obj);
 
 * int param_4 = myCircularQueueRear(obj);
 
 * bool param_5 = myCircularQueueIsEmpty(obj);
 
 * bool param_6 = myCircularQueueIsFull(obj);
 
 * myCircularQueueFree(obj);
*/

end



目录
相关文章
|
3月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
74 1
|
3月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
84 0
|
7月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
159 3
 算法系列之数据结构-Huffman树
|
7月前
|
算法 Java
算法系列之数据结构-二叉搜索树
二叉查找树(Binary Search Tree,简称BST)是一种常用的数据结构,它能够高效地进行查找、插入和删除操作。二叉查找树的特点是,对于树中的每个节点,其左子树中的所有节点都小于该节点,而右子树中的所有节点都大于该节点。
201 22
|
7月前
|
存储 监控 算法
关于员工上网监控系统中 PHP 关联数组算法的学术解析
在当代企业管理中,员工上网监控系统是维护信息安全和提升工作效率的关键工具。PHP 中的关联数组凭借其灵活的键值对存储方式,在记录员工网络活动、管理访问规则及分析上网行为等方面发挥重要作用。通过关联数组,系统能高效记录每位员工的上网历史,设定网站访问权限,并统计不同类型的网站访问频率,帮助企业洞察员工上网模式,发现潜在问题并采取相应管理措施,从而保障信息安全和提高工作效率。
93 7
|
8天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
10天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
|
9天前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
|
8天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
89 14
|
8天前
|
机器学习/深度学习 运维 算法
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)

热门文章

最新文章