【经典算法】 leetcode88.合并排序的数组(Java/C/Python3实现含注释说明,Easy)

简介: 【经典算法】 leetcode88.合并排序的数组(Java/C/Python3实现含注释说明,Easy)

题目描述

给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。
请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。
注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n 。
 
示例 1:
输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
输出:[1,2,2,3,5,6]
解释:需要合并 [1,2,3] 和 [2,5,6] 。
合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。
示例 2:
输入:nums1 = [1], m = 1, nums2 = [], n = 0
输出:[1]
解释:需要合并 [1] 和 [] 。
合并结果是 [1] 。
示例 3:
输入:nums1 = [0], m = 0, nums2 = [1], n = 1
输出:[1]
解释:需要合并的数组是 [] 和 [1] 。
合并结果是 [1] 。
注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。
 
提示:
nums1.length == m + n
nums2.length == n
0 <= m, n <= 200
1 <= m + n <= 200
-109 <= nums1[i], nums2[j] <= 109
 
进阶:你可以设计实现一个时间复杂度为 O(m + n) 的算法解决此问题吗?

原题:LeetCode 88

思路及实现

方式一:从后向前双指针

思路

我们可以使用双指针,分别从两个数组的末尾开始,将较大的数依次放入 nums1 的末尾。因为 nums1 的空间足够大,所以可以直接将 nums2 中的元素放入 nums1 中。当 nums2 的指针到达末尾时,nums1 中剩下的元素就无需移动了,因为它们已经是排好序的。

代码实现

Java版本
public void merge(int[] nums1, int m, int[] nums2, int n) {
    int i = m - 1; // nums1 有效元素末尾指针
    int j = n - 1; // nums2 末尾指针
    int k = m + n - 1; // 合并后数组末尾指针
    
    while (j >= 0) {
        if (i >= 0 && nums1[i] > nums2[j]) {
            nums1[k--] = nums1[i--];
        } else {
            nums1[k--] = nums2[j--];
        }
    }
}

说明:

  • 初始化三个指针,i 指向 nums1 的有效元素末尾,j 指向 nums2 的末尾,k 指向合并后数组的末尾。
  • 当 j >= 0 时,说明 nums2 中还有元素未处理,继续循环。
  • 比较 nums1[i] 和 nums2[j] 的大小,将较大的数放入 nums1[k],并将对应指针前移。
  • 循环结束后,nums1 中的元素已经是合并后的排序数组。
C语言版本
void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n){
    int i = m - 1;
    int j = n - 1;
    int k = m + n - 1;
    
    while (j >= 0) {
        if (i >= 0 && nums1[i] > nums2[j]) {
            nums1[k--] = nums1[i--];
        } else {
            nums1[k--] = nums2[j--];
        }
    }
}

说明:

  • C语言版本的实现与 Java 版本类似,只是参数传递和数组访问的方式略有不同。
Python3版本
def merge(nums1: List[int], m: int, nums2: List[int], n: int) -> None:
    i = m - 1
    j = n - 1
    k = m + n - 1
    
    while j >= 0:
        if i >= 0 and nums1[i] > nums2[j]:
            nums1[k] = nums1[i]
            i -= 1
        else:
            nums1[k] = nums2[j]
            j -= 1
        k -= 1

说明:

  • Python 版本的实现逻辑与 Java 和 C 版本相同,只是语法上有些差异。

复杂度分析

  • 时间复杂度:O(m + n),其中 m 和 n 分别是 nums1 和 nums2 的长度。需要遍历两个数组中的所有元素。
  • 空间复杂度:O(1),除了原数组 nums1 外,没有使用额外的空间。

方式二:从前往后双指针(需要额外空间)

思路

我们创建一个新的数组 temp,其长度为 m + n(即 nums1nums2 合并后的长度)。然后,我们使用两个指针分别遍历 nums1nums2,将较小的元素依次放入 temp 数组中,直到其中一个数组遍历完。最后,将另一个数组中剩余的元素(如果有的话)直接复制到 temp 数组的末尾。最后,将 temp 数组的内容复制回 nums1

代码实现

Java版本
public void merge(int[] nums1, int m, int[] nums2, int n) {
    int[] temp = new int[m + n];
    int i = 0, j = 0, k = 0;
    
    while (i < m && j < n) {
        if (nums1[i] <= nums2[j]) {
            temp[k++] = nums1[i++];
        } else {
            temp[k++] = nums2[j++];
        }
    }
    
    while (i < m) {
        temp[k++] = nums1[i++];
    }
    
    while (j < n) {
        temp[k++] = nums2[j++];
    }
    
    // 将 temp 数组的内容复制回 nums1
    for (i = 0; i < m + n; i++) {
        nums1[i] = temp[i];
    }
}

说明:

  • 初始化三个指针 ijk,分别用于遍历 nums1nums2 和填充 temp 数组。
  • 使用 while 循环比较 nums1[i]nums2[j] 的大小,将较小的数放入 temp[k] 中,并移动对应的指针。
  • 当其中一个数组遍历完后,将另一个数组中剩余的元素直接复制到 temp 数组的末尾。
  • 最后,将 temp 数组的内容复制回 nums1
C语言版本
void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n) {
    int* temp = (int*)malloc((m + n) * sizeof(int));
    int i = 0, j = 0, k = 0;
    
    while (i < m && j < n) {
        if (nums1[i] <= nums2[j]) {
            temp[k++] = nums1[i++];
        } else {
            temp[k++] = nums2[j++];
        }
    }
    
    while (i < m) {
        temp[k++] = nums1[i++];
    }
    
    while (j < n) {
        temp[k++] = nums2[j++];
    }
    
    // 将 temp 数组的内容复制回 nums1
    for (i = 0; i < m + n; i++) {
        nums1[i] = temp[i];
    }
    
    free(temp); // 释放临时数组的空间
}

说明:

  • C语言版本与 Java 版本逻辑相似,但需要注意内存分配和释放。使用 malloc 分配临时数组 temp 的空间,并在使用完毕后使用 free 释放空间。
Python3版本
from typing import List
def merge(nums1: List[int], m: int, nums2: List[int], n: int) -> None:
    temp = [0] * (m + n)
    i, j, k = 0, 0, 0
    
    while i < m and j < n:
        if nums1[i] <= nums2[j]:
            temp[k] = nums1[i]
            i += 1
        else:
            temp[k] = nums2[j]
            j += 1
        k += 1
    
    while i < m:
        temp[k] = nums1[i]
        i += 1
        k += 1
    
    while j < n:
        temp[k] = nums2[j]
        j += 1
        k += 1
    
    # 将 temp 数组的内容复制回nums1
    for i in range(m + n):
    nums1[i] = temp[i]

说明:

  • Python版本使用了列表(List)作为数组,其动态分配内存的特性使得我们无需手动管理内存。
  • 逻辑与其他版本类似,都是将较小的元素依次放入临时数组 temp 中,然后将 temp 的内容复制回 nums1

复杂度分析

  • 时间复杂度:O(m + n),其中 m 和 n 分别是 nums1nums2 的长度。我们需要遍历两个数组的所有元素,并将它们放入临时数组 temp 中,最后再复制回 nums1
  • 空间复杂度:O(m + n),我们需要一个额外的数组 temp 来存储合并后的结果。这个数组的长度是 m + n。

虽然这种方法使用了额外的空间,但它简化了问题,因为我们可以专注于合并两个数组,而无需考虑如何在原地修改 nums1 来容纳 nums2 的元素。在实际应用中,根据具体的性能需求和内存限制,可以选择使用原地修改或者额外空间的方法。

总结

解题方式 优点 缺点 时间复杂度 空间复杂度 其他注意事项
从前往后双指针(原地修改) 无需额外空间,原地修改 逻辑相对复杂,需要正确处理合并细节 O(m + n) O(1) 需要确保 nums1 有足够空间
从前往后双指针(需要额外空间) 逻辑简单,易于理解 需要额外空间存放合并结果 O(m + n) O(m + n) 适用于空间限制不严格的情况

这两种方式都是解决合并两个有序数组问题的有效方法。选择哪种方式取决于具体的性能要求和内存限制。如果内存空间有限,或者希望避免额外的空间开销,可以选择原地修改的方式。如果内存限制不严格,或者希望简化代码逻辑,可以选择使用额外空间的方式。在编写代码时,还需要注意处理边界情况,确保代码的正确性和健壮性。

相似题目

相似题目 难度 链接
两个数组的交集 简单 leetcode-349
两个数组的交集 II 简单 leetcode-350
合并两个有序数组 简单 leetcode-88
合并两个有序链表 中等 leetcode-21
合并K个排序链表 困难 leetcode-23
有序链表转换有序数组 中等 leetcode-148
有序数组的三数之和 中等 leetcode-33
在排序数组中查找元素的第一个和最后一个位置 中等 leetcode-34

这些题目涉及了数组和链表的合并、排序和查找操作,其中一些题目与题目“合并两个有序数组”有类似的解题思路或要求。通过练习这些题目,可以加深对数组和链表操作的理解,提高算法设计和实现的能力。

相关文章
|
3月前
|
JavaScript 前端开发 Java
通义灵码 Rules 库合集来了,覆盖Java、TypeScript、Python、Go、JavaScript 等
通义灵码新上的外挂 Project Rules 获得了开发者的一致好评:最小成本适配我的开发风格、相当把团队经验沉淀下来,是个很好功能……
929 103
|
2月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
2月前
|
人工智能 算法 NoSQL
LRU算法的Java实现
LRU(Least Recently Used)算法用于淘汰最近最少使用的数据,常应用于内存管理策略中。在Redis中,通过`maxmemory-policy`配置实现不同淘汰策略,如`allkeys-lru`和`volatile-lru`等,采用采样方式近似LRU以优化性能。Java中可通过`LinkedHashMap`轻松实现LRUCache,利用其`accessOrder`特性和`removeEldestEntry`方法完成缓存淘汰逻辑,代码简洁高效。
|
8天前
|
算法 数据可视化 数据挖掘
基于EM期望最大化算法的GMM参数估计与三维数据分类系统python源码
本内容展示了基于EM算法的高斯混合模型(GMM)聚类实现,包含完整Python代码、运行效果图及理论解析。程序使用三维数据进行演示,涵盖误差计算、模型参数更新、结果可视化等关键步骤,并附有详细注释与操作视频,适合学习EM算法与GMM模型的原理及应用。
|
2天前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
14 1
|
10天前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
30 4
|
11天前
|
JSON JavaScript 前端开发
Python+JAVA+PHP语言,苏宁商品详情API
调用苏宁商品详情API,可通过HTTP/HTTPS发送请求并解析响应数据,支持多种编程语言,如JavaScript、Java、PHP、C#、Ruby等。核心步骤包括构造请求URL、发送GET/POST请求及解析JSON/XML响应。不同语言示例展示了如何获取商品名称与价格等信息,实际使用时请参考苏宁开放平台最新文档以确保兼容性。
|
1月前
|
Go
【LeetCode 热题100】DP 实战进阶:最长递增子序列、乘积最大子数组、分割等和子集(力扣300 / 152/ 416 )(Go语言版)
本文深入解析三道经典的动态规划问题:**最长递增子序列(LIS)**、**乘积最大子数组** 和 **分割等和子集**。 - **300. LIS** 通过 `dp[i]` 表示以第 `i` 个元素结尾的最长递增子序列长度,支持 O(n²) 动态规划与 O(n log n) 的二分优化。 - **152. 乘积最大子数组** 利用正负数特性,同时维护最大值与最小值的状态转移方程。 - **416. 分割等和子集** 转化为 0-1 背包问题,通过布尔型 DP 实现子集和判断。 总结对比了三题的状态定义与解法技巧,并延伸至相关变种问题,助你掌握动态规划的核心思想与灵活应用!
79 1
|
2月前
|
算法 Python
Apriori算法的Python实例演示
经过运行,你会看到一些集合出现,每个集合的支持度也会给出。这些集合就是你想要的,经常一起被购买的商品组合。不要忘记,`min_support`参数将决定频繁项集的数量和大小,你可以根据自己的需要进行更改。
122 18

热门文章

最新文章

推荐镜像

更多