【YOLOv8改进】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力 (论文笔记+引入代码)

简介: YOLO目标检测专栏介绍了创新的多尺度注意力模块EMA,它强化通道和空间信息处理,同时降低计算负担。EMA模块通过通道重塑和并行子网络优化特征表示,增强长距离依赖建模,在保持效率的同时提升模型性能。适用于图像分类和目标检测任务,尤其在YOLOv8中表现出色。代码实现和详细配置可在文中链接找到。

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

摘要

通道或空间注意力机制在许多计算机视觉任务中表现出显著的效果,可以生成更清晰的特征表示。然而,通过通道维度缩减来建模跨通道关系可能会对提取深度视觉表示带来副作用。本文提出了一种新颖高效的多尺度注意力(EMA)模块。该模块着重于保留每个通道的信息并减少计算开销,我们将部分通道重新调整为批次维度,并将通道维度分组为多个子特征,使空间语义特征在每个特征组内分布均匀。具体来说,除了在每个并行分支中对全局信息进行编码以重新校准通道权重外,这两个并行分支的输出特征还通过跨维度交互进一步聚合,以捕捉像素级的成对关系。我们在图像分类和目标检测任务上进行了广泛的消融研究和实验,使用流行的基准数据集(如CIFAR-100、ImageNet-1k、MS COCO和VisDrone2019)来评估其性能。

创新点

  1. 高效的多尺度注意力机制:EMA模块提出了一种高效的多尺度注意力机制,能够同时捕获通道和空间信息,并在不增加太多参数和计算成本的情况下有效地提高特征表示能力。

  2. 通道维度重塑:EMA模块通过将部分通道重塑为批量维度,将通道维度分组为多个子特征,从而使空间语义特征在每个特征组内得到良好分布,提高了特征的表达能力。

  3. 并行子网络设计:EMA模块采用了并行子网络设计,有助于捕获跨维度的交互作用和建立维度间的依赖关系,提高了模型对长距离依赖关系的建模能力。

  4. 性能优越:EMA模块在目标检测任务中表现出色,相较于传统的注意力模块(如CA和CBAM),EMA在保持模型尺寸和计算效率的同时,取得了更好的性能表现,证明了其在提升模型性能方面的有效性和高效性。

  5. 适用性广泛:EMA模块的模型尺寸适中,适合在移动终端上部署,并且在各种计算机视觉任务中都表现出色,具有广泛的应用前景和实际意义。

yolov8 引入

class EMA(nn.Module):
    def __init__(self, channels, c2=None, factor=32):
        super(EMA, self).__init__()
        self.groups = factor  # 分组数,默认为32
        assert channels // self.groups > 0  # 确保通道数能够被分组数整除
        self.softmax = nn.Softmax(-1)  # 定义 Softmax 层,用于最后一维度的归一化
        self.agp = nn.AdaptiveAvgPool2d((1, 1))  # 自适应平均池化,将特征图缩小为1x1
        self.pool_h = nn.AdaptiveAvgPool2d((None, 1))  # 自适应平均池化,保留高度维度,将宽度压缩为1
        self.pool_w = nn.AdaptiveAvgPool2d((1, None))  # 自适应平均池化,保留宽度维度,将高度压缩为1
        self.gn = nn.GroupNorm(channels // self.groups, channels // self.groups)  # 分组归一化
        self.conv1x1 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=1, stride=1, padding=0)  # 1x1卷积
        self.conv3x3 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=3, stride=1, padding=1)  # 3x3卷积

    def forward(self, x):
        b, c, h, w = x.size()  # 获取输入张量的尺寸:批次、通道、高度、宽度
        group_x = x.reshape(b * self.groups, -1, h, w)  # 将张量按组重构:批次*组数, 通道/组数, 高度, 宽度
        x_h = self.pool_h(group_x)  # 对高度方向进行池化,结果形状为 (b*groups, c//groups, h, 1)
        x_w = self.pool_w(group_x).permute(0, 1, 3, 2)  # 对宽度方向进行池化,并转置结果形状为 (b*groups, c//groups, 1, w)
        hw = self.conv1x1(torch.cat([x_h, x_w], dim=2))  # 将池化后的特征在高度方向拼接后进行1x1卷积
        x_h, x_w = torch.split(hw, [h, w], dim=2)  # 将卷积后的特征分为高度特征和宽度特征
        x1 = self.gn(group_x * x_h.sigmoid() * x_w.permute(0, 1, 3, 2).sigmoid())  # 结合高度和宽度特征,应用分组归一化
        x2 = self.conv3x3(group_x)  # 对重构后的张量应用3x3卷积
        x11 = self.softmax(self.agp(x1).reshape(b * self.groups, -1, 1).permute(0, 2, 1))  # 对 x1 进行自适应平均池化并应用Softmax
        x12 = x2.reshape(b * self.groups, c // self.groups, -1)  # 重构 x2 的形状为 (b*groups, c//groups, h*w)
        x21 = self.softmax(self.agp(x2).reshape(b * self.groups, -1, 1).permute(0, 2, 1))  # 对 x2 进行自适应平均池化并应用Softmax
        x22 = x1.reshape(b * self.groups, c // self.groups, -1)  # 重构 x1 的形状为 (b*groups, c//groups, h*w)
        weights = (torch.matmul(x11, x12) + torch.matmul(x21, x22)).reshape(b * self.groups, 1, h, w)  # 计算权重,并重构为 (b*groups, 1, h, w)
        return (group_x * weights.sigmoid()).reshape(b, c, h, w)  # 将权重应用于原始张量,并重构为原始输入形状

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/139160226

相关文章
|
机器学习/深度学习 PyTorch Go
YOLOv5的Tricks | 【Trick4】参数重结构化(融合Conv+BatchNorm2d)
这篇文章是想要记录yolov5在模型搭建过程中的一个融合模块,就是把卷积与批归一化的参数进行融合,想卷积带有批归一化的性质,使得推理过程中可以加快模型推理速度,简化整个模型结构,实现训练与推理两个阶段的解耦。
780 0
YOLOv5的Tricks | 【Trick4】参数重结构化(融合Conv+BatchNorm2d)
|
28天前
|
机器学习/深度学习 算法 计算机视觉
【YOLOv8改进】CPCA(Channel prior convolutional attention)中的通道注意力,增强特征表征能力 (论文笔记+引入代码)
该专栏聚焦YOLO目标检测的创新改进与实战,介绍了一种针对医学图像分割的通道优先卷积注意力(CPCA)方法。CPCA结合通道和空间注意力,通过多尺度深度卷积提升性能。提出的CPCANet网络在有限计算资源下,于多个数据集上展现优越分割效果。代码已开源。了解更多详情,请访问提供的专栏链接。
|
28天前
|
机器学习/深度学习 计算机视觉 知识图谱
【YOLOv8改进】ACmix(Mixed Self-Attention and Convolution) (论文笔记+引入代码)
YOLO目标检测专栏探讨了YOLO的改进,包括卷积和自注意力机制的创新结合。研究发现两者在计算上存在关联,卷积可分解为1×1卷积,自注意力也可视为1×1卷积的变形。由此提出ACmix模型,它整合两种范式,降低计算开销,同时提升图像识别和下游任务的性能。ACmix优化了移位操作,采用模块化设计,实现两种技术优势的高效融合。代码和预训练模型可在相关GitHub和MindSpore模型库找到。 yolov8中引入了ACmix模块,详细配置参见指定链接。
|
28天前
|
机器学习/深度学习 编解码 PyTorch
【YOLOv8改进】HAT(Hybrid Attention Transformer,)混合注意力机制 (论文笔记+引入代码)
YOLO目标检测专栏介绍了YOLO系列的改进方法和实战应用,包括卷积、主干网络、注意力机制和检测头的创新。提出的Hybrid Attention Transformer (HAT)结合通道注意力和窗口自注意力,激活更多像素以提升图像超分辨率效果。通过交叉窗口信息聚合和同任务预训练策略,HAT优化了Transformer在低级视觉任务中的性能。实验显示,HAT在图像超分辨率任务上显著优于现有方法。模型结构包含浅层和深层特征提取以及图像重建阶段。此外,提供了HAT模型的PyTorch实现代码。更多详细配置和任务说明可参考相关链接。
|
28天前
|
机器学习/深度学习 测试技术 计算机视觉
【YOLOv8改进】DAT(Deformable Attention):可变性注意力 (论文笔记+引入代码)
YOLO目标检测创新改进与实战案例专栏探讨了YOLO的有效改进,包括卷积、主干、注意力和检测头等机制的创新,以及目标检测分割项目的实践。专栏介绍了Deformable Attention Transformer,它解决了Transformer全局感受野带来的问题,通过数据依赖的位置选择、灵活的偏移学习和全局键共享,聚焦相关区域并捕获更多特征。模型在多个基准测试中表现优秀,代码可在GitHub获取。此外,文章还展示了如何在YOLOv8中应用Deformable Attention。
|
28天前
|
测试技术 计算机视觉
【YOLOv8改进】LSKA(Large Separable Kernel Attention):大核分离卷积注意力模块 (论文笔记+引入代码)
YOLO目标检测专栏介绍了大可分卷积核注意力模块LSKA,用于解决VAN中大卷积核效率问题。LSKA通过分解2D卷积为1D卷积降低计算复杂度和内存占用,且使模型关注形状而非纹理,提高鲁棒性。在多种任务和数据集上,LSKA表现优于ViTs和ConvNeXt,代码可在GitHub获取。基础原理包括LSKA的卷积核分解设计和计算效率优化。示例展示了LSKA模块的实现。更多详情及配置参见相关链接。
|
28天前
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv8改进】D-LKA Attention:可变形大核注意力 (论文笔记+引入代码)
YOLO目标检测专栏探讨了Transformer在医学图像分割的进展,但计算需求限制了模型的深度和分辨率。为此,提出了可变形大核注意力(D-LKA Attention),它使用大卷积核捕捉上下文信息,通过可变形卷积适应数据模式变化。D-LKA Net结合2D和3D版本的D-LKA Attention,提升了医学分割性能。YOLOv8引入了可变形卷积层以增强目标检测的准确性。相关代码和任务配置可在作者博客找到。
|
28天前
|
机器学习/深度学习 编解码 算法
【YOLOv8改进】Polarized Self-Attention: 极化自注意力 (论文笔记+引入代码)
该专栏专注于YOLO目标检测算法的创新改进和实战应用,包括卷积、主干网络、注意力机制和检测头的改进。作者提出了一种名为极化自注意(PSA)块,结合极化过滤和增强功能,提高像素级回归任务的性能,如关键点估计和分割。PSA通过保持高分辨率和利用通道及空间注意力,减少了信息损失并适应非线性输出分布。实验证明,PSA能提升标准基线和最新技术1-4个百分点。代码示例展示了如何在YOLOv8中实现PSA模块。更多详细信息和配置可在提供的链接中找到。
|
8天前
|
机器学习/深度学习 编解码 算法
【YOLOv8改进】MLCA(Mixed local channel attention):混合局部通道注意力(论文笔记+引入代码)
**摘要:** 本文提出轻量级MLCA模块,结合通道、空间、局部及全局信息,提升网络表达效率。在MobileNet-Attention-YOLO(MAY)中应用MLCA,于PASCAL VOC和SMID数据集上对比SE和CA,mAP提升1.0%和1.5%。论文及代码链接提供。MLCA通过局部池化和反池化处理,增强通道交互和空间信息,实现更精确的目标检测。详情见YOLO改进与实战专栏。
|
1月前
【视频】线性混合效应模型(LMM,Linear Mixed Models)和R语言实现案例(四)
【视频】线性混合效应模型(LMM,Linear Mixed Models)和R语言实现案例