RT-DETR改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,轻量化注意力模块 提高模型效率

简介: RT-DETR改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,轻量化注意力模块 提高模型效率

一、本文介绍

本文记录的是基于Mobile MQA模块的RT-DETR目标检测改进方法研究MobileNetv4中的Mobile MQA模块是用于模型加速,减少内存访问的模块,相比其他全局的自注意力,==其不仅加强了模型对全局信息的关注,同时也显著提高了模型效率。==


专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:RT-DETR改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、Mobile MQA注意力原理

在论文《MobileNetV4 - Universal Models for the Mobile Ecosystem》中,提出了Mobile MQA

一、原理

  1. 基于MQA改进并结合不对称空间下采样
    • MQA(Multi-Query Attention)简化了传统的多头注意力机制,通过共享keysvalues来减少内存访问需求。在移动混合模型中,当批量大小较小时,这种方式能有效提高运算强度。
    • 借鉴MQA中对querieskeysvalues的不对称计算方式,Mobile MQA引入了空间缩减注意力(SRA),对keysvalues进行下采样,同时保持高分辨率的queries。这是因为在混合模型中,早期层的空间混合卷积滤波器使得空间上相邻的标记具有相关性。
    • Mobile MQA的计算公式为:
      $Mobile_MQA(X)= Concat(attention_1,...,attention_n)W^{O}$,
      其中$attention_j = softmax(\frac{(XW^{Q_j})(SR(X)W^{K})^{T}}{\sqrt{d_k}})(SR(X)W^{V})$,这里SR可以是空间缩减操作(在设计中是一个步长为2的3x3深度卷积),也可以是恒等函数(当不进行空间缩减时)。

二、特点

  1. 针对加速器优化:专门为移动加速器进行了优化,考虑了移动加速器的计算和内存特性。
  2. 不对称空间下采样:通过对keysvalues进行下采样,保持queries的高分辨率,在不损失太多精度的情况下,显著提高了效率。
  3. 操作简单高效:相比传统的注意力机制,Mobile MQA的设计更加简单,操作更加高效,更适合在移动设备上运行。

论文:http://arxiv.org/abs/2404.10518
源码:https://github.com/tensorflow/models/blob/master/official/vision/modeling/backbones/mobilenet.py

三、实现代码及RT-DETR修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/140705779

相关文章
|
10月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
YOLOv11改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,轻量化注意力模块 提高模型效率
YOLOv11改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,轻量化注意力模块 提高模型效率
512 0
|
缓存 JavaScript 网络架构
[Vue]学习笔记目录 【Vue2与Vue3完结】 (尚硅谷Vue2.0+Vue3.0全套教程丨vuejs从入门到精通)
[Vue]学习笔记目录 【Vue2与Vue3完结】 (尚硅谷Vue2.0+Vue3.0全套教程丨vuejs从入门到精通)
|
10月前
|
计算机视觉
RT-DETR改进策略【Neck】| TPAMI 2024 FreqFusion 频域感知特征融合模块 解决密集图像预测问题
RT-DETR改进策略【Neck】| TPAMI 2024 FreqFusion 频域感知特征融合模块 解决密集图像预测问题
375 17
RT-DETR改进策略【Neck】| TPAMI 2024 FreqFusion 频域感知特征融合模块 解决密集图像预测问题
|
10月前
|
机器学习/深度学习 测试技术 计算机视觉
RT-DETR改进策略【Conv和Transformer】| ICCV-2023 iRMB 倒置残差移动块 轻量化的注意力模块
RT-DETR改进策略【Conv和Transformer】| ICCV-2023 iRMB 倒置残差移动块 轻量化的注意力模块
256 14
RT-DETR改进策略【Conv和Transformer】| ICCV-2023 iRMB 倒置残差移动块 轻量化的注意力模块
|
10月前
|
机器学习/深度学习 编解码 计算机视觉
RT-DETR改进策略【卷积层】| ICCV-2023 SAFM 空间自适应特征调制模块 对ResNetLayer进行二次创新
RT-DETR改进策略【卷积层】| ICCV-2023 SAFM 空间自适应特征调制模块 对ResNetLayer进行二次创新
382 9
RT-DETR改进策略【卷积层】| ICCV-2023 SAFM 空间自适应特征调制模块 对ResNetLayer进行二次创新
|
10月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【注意力机制篇】| EMA 即插即用模块,提高远距离建模依赖(含二次创新)
RT-DETR改进策略【注意力机制篇】| EMA 即插即用模块,提高远距离建模依赖(含二次创新)
444 1
RT-DETR改进策略【注意力机制篇】| EMA 即插即用模块,提高远距离建模依赖(含二次创新)
|
10月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Head】| AFPN渐进式自适应特征金字塔,增加针对小目标的检测头(附模块详解和完整配置步骤)
YOLOv11改进策略【Head】| AFPN渐进式自适应特征金字塔,增加针对小目标的检测头(附模块详解和完整配置步骤)
1294 12
YOLOv11改进策略【Head】| AFPN渐进式自适应特征金字塔,增加针对小目标的检测头(附模块详解和完整配置步骤)
|
10月前
|
机器学习/深度学习 编解码 测试技术
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
819 8
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
|
10月前
|
并行计算 PyTorch Shell
YOLOv11改进策略【Neck】| 有效且轻量的动态上采样算子:DySample
YOLOv11改进策略【Neck】| 有效且轻量的动态上采样算子:DySample
909 11
YOLOv11改进策略【Neck】| 有效且轻量的动态上采样算子:DySample
|
10月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
1037 9
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度