RT-DETR改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,轻量化注意力模块 提高模型效率

简介: RT-DETR改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,轻量化注意力模块 提高模型效率

一、本文介绍

本文记录的是基于Mobile MQA模块的RT-DETR目标检测改进方法研究MobileNetv4中的Mobile MQA模块是用于模型加速,减少内存访问的模块,相比其他全局的自注意力,==其不仅加强了模型对全局信息的关注,同时也显著提高了模型效率。==


专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:RT-DETR改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、Mobile MQA注意力原理

在论文《MobileNetV4 - Universal Models for the Mobile Ecosystem》中,提出了Mobile MQA

一、原理

  1. 基于MQA改进并结合不对称空间下采样
    • MQA(Multi-Query Attention)简化了传统的多头注意力机制,通过共享keysvalues来减少内存访问需求。在移动混合模型中,当批量大小较小时,这种方式能有效提高运算强度。
    • 借鉴MQA中对querieskeysvalues的不对称计算方式,Mobile MQA引入了空间缩减注意力(SRA),对keysvalues进行下采样,同时保持高分辨率的queries。这是因为在混合模型中,早期层的空间混合卷积滤波器使得空间上相邻的标记具有相关性。
    • Mobile MQA的计算公式为:
      $Mobile_MQA(X)= Concat(attention_1,...,attention_n)W^{O}$,
      其中$attention_j = softmax(\frac{(XW^{Q_j})(SR(X)W^{K})^{T}}{\sqrt{d_k}})(SR(X)W^{V})$,这里SR可以是空间缩减操作(在设计中是一个步长为2的3x3深度卷积),也可以是恒等函数(当不进行空间缩减时)。

二、特点

  1. 针对加速器优化:专门为移动加速器进行了优化,考虑了移动加速器的计算和内存特性。
  2. 不对称空间下采样:通过对keysvalues进行下采样,保持queries的高分辨率,在不损失太多精度的情况下,显著提高了效率。
  3. 操作简单高效:相比传统的注意力机制,Mobile MQA的设计更加简单,操作更加高效,更适合在移动设备上运行。

论文:http://arxiv.org/abs/2404.10518
源码:https://github.com/tensorflow/models/blob/master/official/vision/modeling/backbones/mobilenet.py

三、实现代码及RT-DETR修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/140705779

目录
相关文章
|
1月前
|
机器学习/深度学习 计算机视觉 异构计算
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2023 FasterNet 高效快速的部分卷积块
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2023 FasterNet 高效快速的部分卷积块
72 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2023 FasterNet 高效快速的部分卷积块
|
1月前
|
机器学习/深度学习 测试技术 网络架构
RT-DETR改进策略【卷积层】| NeurIPS-2022 ParNet 即插即用模块 二次创新ResNetLayer
RT-DETR改进策略【卷积层】| NeurIPS-2022 ParNet 即插即用模块 二次创新ResNetLayer
41 10
RT-DETR改进策略【卷积层】| NeurIPS-2022 ParNet 即插即用模块 二次创新ResNetLayer
|
1月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Head】| (独家改进)结合 ICME-2024 中的PPA注意力模块,自研带有注意力机制的小目标检测头
YOLOv11改进策略【Head】| (独家改进)结合 ICME-2024 中的PPA注意力模块,自研带有注意力机制的小目标检测头
66 10
YOLOv11改进策略【Head】| (独家改进)结合 ICME-2024 中的PPA注意力模块,自研带有注意力机制的小目标检测头
|
1月前
|
机器学习/深度学习 资源调度 数据可视化
RT-DETR改进策略【注意力机制篇】| 引入Shuffle Attention注意力模块,增强特征图的语义表示
RT-DETR改进策略【注意力机制篇】| 引入Shuffle Attention注意力模块,增强特征图的语义表示
68 4
RT-DETR改进策略【注意力机制篇】| 引入Shuffle Attention注意力模块,增强特征图的语义表示
|
1月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【注意力机制篇】| ICLR2023 高效计算与全局局部信息融合的 Sea_Attention 模块(含HGBlock二次创新)
RT-DETR改进策略【注意力机制篇】| ICLR2023 高效计算与全局局部信息融合的 Sea_Attention 模块(含HGBlock二次创新)
43 2
RT-DETR改进策略【注意力机制篇】| ICLR2023 高效计算与全局局部信息融合的 Sea_Attention 模块(含HGBlock二次创新)
|
1月前
|
机器学习/深度学习 算法 计算机视觉
RT-DETR改进策略【Conv和Transformer】| 2024 AssemFormer 结合卷积与 Transformer 优势,弥补传统方法不足
RT-DETR改进策略【Conv和Transformer】| 2024 AssemFormer 结合卷积与 Transformer 优势,弥补传统方法不足
40 1
RT-DETR改进策略【Conv和Transformer】| 2024 AssemFormer 结合卷积与 Transformer 优势,弥补传统方法不足
|
1月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【注意力机制篇】| WACV-2021 Triplet Attention 三重注意力模块 - 跨维度交互注意力机制优化
RT-DETR改进策略【注意力机制篇】| WACV-2021 Triplet Attention 三重注意力模块 - 跨维度交互注意力机制优化
29 1
RT-DETR改进策略【注意力机制篇】| WACV-2021 Triplet Attention 三重注意力模块 - 跨维度交互注意力机制优化
|
1月前
|
机器学习/深度学习 资源调度 计算机视觉
RT-DETR改进策略【注意力机制篇】| NAM 即插即用模块,重新优化通道和空间注意力(含HGBlock二次创新)
RT-DETR改进策略【注意力机制篇】| NAM 即插即用模块,重新优化通道和空间注意力(含HGBlock二次创新)
86 1
RT-DETR改进策略【注意力机制篇】| NAM 即插即用模块,重新优化通道和空间注意力(含HGBlock二次创新)
|
1月前
|
机器学习/深度学习 人工智能 并行计算
RT-DETR改进策略【RT-DETR和Mamba】| MLLA:Mamba-Like Linear Attention,融合Mamba设计优势的注意力机制
RT-DETR改进策略【RT-DETR和Mamba】| MLLA:Mamba-Like Linear Attention,融合Mamba设计优势的注意力机制
54 1
RT-DETR改进策略【RT-DETR和Mamba】| MLLA:Mamba-Like Linear Attention,融合Mamba设计优势的注意力机制
|
1月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【注意力机制篇】| ICLR2023 高效计算与全局局部信息融合的 Sea_Attention 模块(含C2PSA二次创新)
YOLOv11改进策略【注意力机制篇】| ICLR2023 高效计算与全局局部信息融合的 Sea_Attention 模块(含C2PSA二次创新)
86 2
YOLOv11改进策略【注意力机制篇】| ICLR2023 高效计算与全局局部信息融合的 Sea_Attention 模块(含C2PSA二次创新)