[ICDE2024]多正常模式感知的频域异常检测算法MACE

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 阿里云计算平台大数据基础工程技术团队主导,与浙江大学合作的论文《Learning Multi-Pattern Normalities in the Frequency Domain for Efficient Time Series Anomaly Detection》被ICDE2024收录,该论文解决了云服务环境中不同服务存在不同正常模式,而传统神经网络一个训练好的模型只能较好捕捉一种或少数几种正常模式的问题,该论文提出的方法可以使用一个统一模型对不同服务进行检测,就达到比为每一个服务定制一个模型的SOTA方法更好的效果。

开篇

近日,由阿里云计算平台大数据基础工程技术团队主导,与浙江大学合作的论文《Learning Multi-Pattern Normalities in the Frequency Domain for Efficient Time Series Anomaly Detection》被ICDE2024收录,该论文解决了云服务环境中不同服务存在不同正常模式,而传统神经网络一个训练好的模型只能较好捕捉一种或少数几种正常模式的问题,该论文提出的方法可以使用一个统一模型对不同服务进行检测,就达到比为每一个服务定制一个模型的SOTA方法更好的效果。

背景

近来,基于重构类方法的异常检测模型独占鳌头,在无监督异常检测中达到了很高的准确度,涌现了大量优秀的神经网络模型,例如:基于RNN类的神经网络OmniAnomaly, MSCRED; 基于transformer类的神经网络AnomalyTransformer, DCdetector等。但这类方法一个模型只能较好地捕捉一种或少数几种正常模式。因此,涌现出了一批以元学习为辅助,快速适应不同正常模式的异常检测模型,例如PUAD, TranAD等。但这些方法依然要求对不同的正常模式定制不同的模型,当存在十万级不同正常模式的服务时,很难维护这么多神经网络模型。因此,本文探索一种可以对多正常模式适用的统一神经网络模型。

挑战

1.一个样本在一种正常模式下为正常数据,但在另一种正常模式下可能变为异常数据。如果使用统一神经网络对不同正常模式进行异常检测时,要令神经网络适应不同的标准。

2.对于大规模云服务中心而言,需实时处理大量服务监测数据,因此,降低神经网络时间开销,提升神经网络并行化粒度是一个迫切需求。3.当前基于重构的方法,对于短期异常不够敏感。而云服务往往存在持续性异常和短期异常交替出现的情况。


破局

image.png

与其他神经网络直接从数据样本中判断当前样本是否为异常不同,MACE从数据样本与该数据样本对应的正常模式的关系中提取异常。在MACE中,我们首先提出使用频域表征机制提取出正常模式的频域子空间,并使用频域表征技术把当前数据样本映射到该频域子空间中。若该数据样本离这个正常模式的频域子空间越远则在映射后,映射点与原始样本距离越远,重构误差越大。若该数据样本离这个频域子空间的频域子空间越近,则在映射后,映射点与原始样本距离越近,重构误差越小。因此,我们可以根据当前数据样本与其对应的正常模式频域子空间的关系,令对于当前正常模式而言的正常数据重构误差远小于异常数据的重构误差,以此检测异常。更进一步,我们提出上下文感知的傅里叶变换和反变换机制,有效利用频域的稀疏性提升计算效率,在频域上不存在时序依赖,可以对该模型进行细粒度的高并发实现,进一步减少异常检测的时间开销。另外,我们提出Peak Convolution与Valley Convolution机制对短期异常进行增强使其更容易被检测到。


应用

现已将MACE集成到飞天大数据AI管控平台ABM的异常检测算法服务中,辅助大数据平台进行异常的及时发现。

  • 论文标题:Learning Multi-Pattern Normalities in the Frequency Domain for Efficient Time Series Anomaly Detection
  • 论文作者:陈飞佚,张颖莹,秦臻,范伦挺,姜仁河,梁宇轩,文青松,邓水光
  • pdf链接:https://arxiv.org/abs/2311.16191
相关文章
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
1月前
|
算法 搜索推荐
如何用CRDT算法颠覆文档协作模式?
在局域网环境下,高效文档协同编辑面临版本冲突等核心技术挑战,影响协作效率和成果质量。为解决此问题,可采用基于CRDT的算法,允许多用户无冲突实时编辑;或将协同操作模块化,通过任务看板优化协作流程,减少冲突,提高团队效率。未来,局域网协同编辑将更加场景化与个性化,深入探索组织协作文化。
|
2月前
|
机器学习/深度学习 监控 算法
基于反光衣和检测算法的应用探索
本文探讨了利用机器学习和计算机视觉技术进行反光衣检测的方法,涵盖图像预处理、目标检测与分类、特征提取等关键技术。通过YOLOv5等模型的训练与优化,展示了实现高效反光衣识别的完整流程,旨在提升智能检测系统的性能,应用于交通安全、工地监控等领域。
|
3月前
|
算法 安全
分别使用OVP-UVP和OFP-UFP算法以及AFD检测算法实现反孤岛检测simulink建模与仿真
本课题通过Simulink建模与仿真,实现OVP-UVP、OFP-UFP算法及AFD检测算法的反孤岛检测。OVP-UVP基于电压幅值变化,OFP-UFP基于频率变化,而AFD则通过注入频率偏移信号来检测孤岛效应,确保电力系统安全稳定运行。系统使用MATLAB 2013b进行建模与仿真验证。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
2月前
|
存储 JSON 算法
TDengine 检测数据最佳压缩算法工具,助你一键找出最优压缩方案
在使用 TDengine 存储时序数据时,压缩数据以节省磁盘空间是至关重要的。TDengine 支持用户根据自身数据特性灵活指定压缩算法,从而实现更高效的存储。然而,如何选择最合适的压缩算法,才能最大限度地降低存储开销?为了解决这一问题,我们特别推出了一个实用工具,帮助用户快速判断并选择最适合其数据特征的压缩算法。
70 0
|
3月前
|
前端开发 算法 JavaScript
无界SaaS模式深度解析:算力算法、链接力、数据确权制度
私域电商的无界SaaS模式涉及后端开发、前端开发、数据库设计、API接口、区块链技术、支付和身份验证系统等多个技术领域。本文通过简化框架和示例代码,指导如何将核心功能转化为技术实现,涵盖用户管理、企业店铺管理、数据流量管理等关键环节。
|
3月前
|
算法 计算机视觉 Python
圆形检测算法-基于颜色和形状(opencv)
该代码实现了一个圆检测算法,用于识别视频中的红色、白色和蓝色圆形。通过将图像从RGB转换为HSV颜色空间,并设置对应颜色的阈值范围,提取出目标颜色的区域。接着对这些区域进行轮廓提取和面积筛选,使用霍夫圆变换检测圆形,并在原图上绘制检测结果。
111 0
|
5月前
|
机器学习/深度学习 监控 算法
目标检测算法技术
8月更文挑战第11天
|
5月前
|
机器学习/深度学习 监控 算法
目标检测算法
8月更文挑战第5天

热门文章

最新文章