Hadoop Yarn 配置多队列的容量调度器

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
Elasticsearch Serverless检索通用型,资源抵扣包 100CU*H
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 配置Hadoop多队列容量调度器,编辑`capacity-scheduler.xml`,新增`hive`队列,`default`队列占总内存40%,最大60%;`hive`队列占60%,最大80%。配置包括队列容量、用户权限和应用生存时间等,配置后使用`yarn rmadmin -refreshQueues`刷新队列,无需重启集群。多队列配置可在Yarn WEB界面查看。

@[toc]

配置多队列的容量调度器

首先,我们进入 Hadoop 的配置文件目录中($HADOOP_HOME/etc/hadoop);

然后通过编辑容量调度器配置文件 capacity-scheduler.xml 来配置多队列的形式。

默认只有 default 队列,显然一个队列不符合集群的生产环境,会造成队列阻塞,资源分配不合理的情况等等,所以这时候就需要配置多队列了。

需求:

  • default 队列占总内存的 40%,最大资源容量占总资源 60%

  • hive 队列占总内存的 60%,最大资源容量占总资源 80%

不管配置多少个队列,总内存的和值最大不超过100%,超过会直接报错。

最大资源容量单个不超过100%,同时在配置队列的情况下也不要配置为100%,那样就失去了配置队列的意义,并发情况下和单队列一样了。

修改相关配置:

<!-- 新增hive队列,默认只有default -->
<property>
    <name>yarn.scheduler.capacity.root.queues</name>
    <value>default,hive</value>
</property>

<!-- 降低default队列资源额定容量为40%,默认100% -->
<property>
    <name>yarn.scheduler.capacity.root.default.capacity</name>
    <value>40</value>
</property>

<!-- 降低default队列资源最大容量为60%,默认100% -->
<property>
    <name>yarn.scheduler.capacity.root.default.maximum-capacity</name>
    <value>60</value>
</property>

为新队列添加相关配置:

<!-- 指定hive队列的资源额定容量 -->
<property>
    <name>yarn.scheduler.capacity.root.hive.capacity</name>
    <value>60</value>
</property>

<!-- 用户最多可以使用队列多少资源,1表示使用所有资源,也就是百分之百 -->
<property>
    <name>yarn.scheduler.capacity.root.hive.user-limit-factor</name>
    <value>1</value>
</property>

<!-- 指定hive队列的资源最大容量 -->
<property>
    <name>yarn.scheduler.capacity.root.hive.maximum-capacity</name>
    <value>80</value>
</property>

<!-- 启动hive队列 -->
<property>
    <name>yarn.scheduler.capacity.root.hive.state</name>
    <value>RUNNING</value>
</property>

<!-- 哪些用户有权向队列提交作业 -->
<property>
    <name>yarn.scheduler.capacity.root.hive.acl_submit_applications</name>
    <value>*</value>
</property>

<!-- 哪些用户有权操作队列,管理员权限(查看/杀死) -->
<property>
    <name>yarn.scheduler.capacity.root.hive.acl_administer_queue</name>
    <value>*</value>
</property>

<!-- 哪些用户有权配置提交任务优先级 -->
<property>
    <name>yarn.scheduler.capacity.root.hive.acl_application_max_priority</name>
    <value>*</value>
</property>

<!-- 指定了Hive作业的最大应用程序生存时间,将参数设置为 -1 意味着不设置应用程序生存时间的限制,即Hive作业的应用程序可以一直保持运行状态,直到它们自己完成或被终止。-->
<property>
    <name>yarn.scheduler.capacity.root.hive.maximum-application-lifetime</name>
    <value>-1</value>
</property>

<!-- 指定了Hive作业的默认应用程序生存时间-->
<property>
    <name>yarn.scheduler.capacity.root.hive.default-application-lifetime</name>
    <value>-1</value>
</property>

配置添加完成后,分发配置到集群其它机器。

该配置设置完成后,无需重启集群,使用下列命令进行队列刷新即可:

yarn rmadmin -refreshQueues

当然,不嫌麻烦可以去重启集群。

多队列查看

进入 Yarn 的 WEB 界面就可以看到我们配置好的队列了。

image.png

点开可以看到更为详细的配置信息:

image.png

相关文章
|
6月前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
348 9
|
7月前
|
存储 分布式计算 资源调度
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
178 5
|
7月前
|
资源调度 数据可视化 大数据
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
90 4
|
7月前
|
XML 分布式计算 资源调度
大数据-02-Hadoop集群 XML配置 超详细 core-site.xml hdfs-site.xml 3节点云服务器 2C4G HDFS Yarn MapRedece(一)
大数据-02-Hadoop集群 XML配置 超详细 core-site.xml hdfs-site.xml 3节点云服务器 2C4G HDFS Yarn MapRedece(一)
330 5
|
7月前
|
XML 资源调度 网络协议
大数据-02-Hadoop集群 XML配置 超详细 core-site.xml hdfs-site.xml 3节点云服务器 2C4G HDFS Yarn MapRedece(二)
大数据-02-Hadoop集群 XML配置 超详细 core-site.xml hdfs-site.xml 3节点云服务器 2C4G HDFS Yarn MapRedece(二)
365 4
|
7月前
|
分布式计算 资源调度 Hadoop
大数据-01-基础环境搭建 超详细 Hadoop Java 环境变量 3节点云服务器 2C4G XML 集群配置 HDFS Yarn MapRedece
大数据-01-基础环境搭建 超详细 Hadoop Java 环境变量 3节点云服务器 2C4G XML 集群配置 HDFS Yarn MapRedece
212 4
|
8月前
|
资源调度 分布式计算 Hadoop
YARN(Hadoop操作系统)的架构
本文详细解释了YARN(Hadoop操作系统)的架构,包括其主要组件如ResourceManager、NodeManager和ApplicationMaster的作用以及它们如何协同工作来管理Hadoop集群中的资源和调度作业。
274 3
YARN(Hadoop操作系统)的架构
|
8月前
|
资源调度 分布式计算 Hadoop
使用YARN命令管理Hadoop作业
本文介绍了如何使用YARN命令来管理Hadoop作业,包括查看作业列表、检查作业状态、杀死作业、获取作业日志以及检查节点和队列状态等操作。
187 1
使用YARN命令管理Hadoop作业
|
9月前
|
资源调度 分布式计算 算法
【揭秘Yarn调度秘籍】打破资源分配的枷锁,Hadoop Yarn权重调度全攻略!
【8月更文挑战第24天】在大数据处理领域,Hadoop Yarn 是一种关键的作业调度与集群资源管理工具。它支持多种调度器以适应不同需求,默认采用FIFO调度器,但可通过引入基于权重的调度算法来提高资源利用率。该算法根据作业或用户的权重值决定资源分配比例,权重高的可获得更多计算资源,特别适合多用户共享环境。管理员需在Yarn配置文件中启用特定调度器(如CapacityScheduler),并通过设置队列权重来实现资源的动态调整。合理配置权重有助于避免资源浪费,确保集群高效运行,满足不同用户需求。
128 3
|
12月前
|
资源调度 分布式计算 Hadoop
Hadoop Yarn 核心调优参数
这是一个关于测试集群环境的配置说明,包括3台服务器(master, slave1, slave2)运行CentOS 7.5,每台有4核CPU和4GB内存。集群使用Hadoop 3.1.3,JDK1.8。Yarn核心配置涉及调度器选择、ResourceManager线程数、节点检测、逻辑处理器使用、核心转换乘数、NodeManager内存和CPU设置,以及容器的内存和CPU限制。配置完成后,需要重启Hadoop并检查yarn配置。
225 4

相关实验场景

更多