C语言进阶⑰(动态内存管理)四个动态内存函数+动态通讯录+柔性数组_malloc+free(下)

简介: C语言进阶⑰(动态内存管理)四个动态内存函数+动态通讯录+柔性数组_malloc+free

C语言进阶⑰(动态内存管理)四个动态内存函数+动态通讯录+柔性数组_malloc+free(中):https://developer.aliyun.com/article/1513205

5. C/C++程序的内存开辟

C/C++程序内存分配的几个区域:

1. 栈区(stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,

函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,

效率很高,但是分配的内存容量有限。 栈区主要存放运行函数而分配的局部变量、

函数参数、返回数据、返回地址等。

2. 堆区(heap):一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。

分配方式类似于链表。

3. 数据段(静态区)(static)存放全局变量、静态数据。程序结束后由系统释放。

4. 代码段:存放函数体(类成员函数和全局函数)的二进制代码。

内存区域划分图:

有了这幅图,我们就可以更好的理解在前面讲的static关键字修饰局部变量的例子了。

实际上普通的局部变量是在栈区分配空间的,栈区的特点是在上面创建的变量出了作用域就销毁。

但是被static修饰的变量存放在数据段(静态区),数据段的特点是在上面创建的变量,

直到程序结束才销毁,所以生命周期变长。

栈区的特点:在上面创建的变量出了作用域就销毁。

数据段的特点:在上面创建的变量直到程序结束才销毁。


6. 柔性数组 flexible array

也许你从来没有听说过柔性数组(flexible array)这个概念,但是它确实是存在的。


C99 中,结构中的最后一个元素允许是未知大小的数组,这就叫做『柔性数组』成员。


定义:柔性数组(Flexible Array),又称可变长数组。一般数组的长度是在编译时确定,而柔性数组对象的长度在运行时确定。在定义结构体时允许你创建一个空数组(例如:arr [ 0 ] ),该数组的大小可在程序运行过程中按照你的需求变动。


【百度百科】在 ANSI 的标准确立后,C语言的规范在一段时间内没有大的变动,

然而C++在自己的标准化创建过程中继续发展壮大。《标准修正案一》在1994年为C语言创建了一个新标准,但是只修正了一些C89标准中的细节和增加更多更广的国际字符集支持。不过,这个标准引出了1999年ISO 9899:1999的发表。被称为C99,C99被ANSI于2000年3月采用。

演示:

 
typedef struct st_type
{
 int i;
 int a[0];//柔性数组成员
}type_a;

部分编译器可能会报错,可以试着将 a [ 0 ] 改为 a [ ]

 
typedef struct st_type
{
 int i;
 int a[];//柔性数组成员
}type_a;

6.1 柔性数组的特点:

1.结构中的柔性数组成员的前面必须至少有一个其他成员:

 
typedef struct st_type
{
    int i;//必须至少有一个其他成员
    int a[0];//柔性数组成员
}type_a;

2.sizeof 计算这种结构的大小是不包含柔性数组成员的:

 
#include <stdio.h>
struct S 
{
    int n; // 4
    int arr[]; // 大小是未知的
};
int main() 
{
    struct S s = { 0 };
    printf("%d\n", sizeof(s));//4
    return 0;
}

3.包含柔性数组成员的结构,用 malloc 函数进行内存分配,

并且分配的内存应该大于结构的大小,以适应柔性数组的预期大小:

 
#include <stdio.h>
#include <stdlib.h>
struct S
{
    int n;
    int arr[0];
};
int main()
{
    //期望arr的大小是10个整型           给n的                 给arr[]的
    struct S* ps = (struct S*)malloc(sizeof(struct S) + 10 * sizeof(int));
    // 后面+的大小就是给柔性数组准备的
    return 0;
}

6.2 柔性数组的使用

代码1:使用柔性数组

 
#include <stdio.h>
#include <stdlib.h>
struct S
{
    int n;
    int arr[0];
};
int main()
{
    // 期望arr的大小是10个整型
    struct S* ps = (struct S*)malloc(sizeof(struct S) + 10 * sizeof(int));
    if (ps == NULL)
    {
        printf("malloc fail\n");
        return -1;
    }
    ps->n = 10;
    // 使用
    for (int i = 0; i < 10; i++)
    {
        ps->arr[i] = i;
    }
    for (int i = 0; i < 10; i++)
    {
        printf("%d ", ps->arr[i]);
    }
    // 增容
    struct S* ptr = (struct S*)realloc(ps, sizeof(struct S) + 20 * sizeof(int));
    if (ptr != NULL)
    {
        ps = ptr;
    }
    // 再次使用 (略)
    // 释放
    free(ps);
    ps = NULL;
    return 0;
}

6.3 柔性数组的优势

代码2:直接使用指针

想让n拥有自己的空间,其实不使用柔性数组也可以实现。

 
#include <stdio.h>
#include <stdlib.h>
struct S 
{
    int n;
    int* arr;
};
int main() 
{
    struct S* ps = (struct S*)malloc(sizeof(struct S));
    if (ps == NULL)
    {
        printf("malloc fail\n");
        return -1;
    }
    ps->n = 10;
    ps->arr = (int*)malloc(10 * sizeof(int));
    if (ps->arr == NULL)
    {
        printf("malloc fail\n");
        return -1;
    }
    // 使用
    for (int i = 0; i < 10; i++)
    {
        ps->arr[i] = i;
    }
    for (int i = 0; i < 10; i++)
    {
        printf("%d ", ps->arr[i]);
    }
    // 增容
    int* ptr = (struct S*)realloc(ps->arr, 20 * sizeof(int));
    if (ptr != NULL) 
    {
        ps->arr = ptr;
    }
    // 再次使用 (略)
    // 释放
    free(ps->arr); // 先free第二块空间
    ps->arr = NULL;
    free(ps);
    ps = NULL;
    return 0;
}

虽然 代码2 实现了相应的功能,但是和 代码1 比还是有很多不足之处的。代码2 使用指针完成,

进行了两次 malloc ,而两次 malloc 对应了两次 free ,相比于 代码1 更容易出错

上述 代码1 和 代码2 可以完成同样的功能,但是 方法1 的实现有两个好处:

第一个好处是:方便内存释放

如果我们的代码是在一个给别人用的函数中,你在里面做了二次内存分配,并把整个结构体返回给用户。用户调用free可以释放结构体, 但是用户并不知道这个结构体内的成员也需要free,

所以你不能指望用户来发现这个事。所以,如果把结构体的内存以及其成员要的内存一次性分配好,并返回给用户一个结构体指针,用户做一次free就可以把所有的内存也给释放掉。

第二个好处是:这样有利于访问速度.

连续内存多多少少有益于提高访问速度,还能减少内存碎片。malloc 的次数越多,
产生的内存碎片越多,这些内存碎片不大不小,
再次被利用的可能性很低。内存碎片越多,
内存的利用率就会降低。频繁的开辟空间效率会变低,碎片也会增加。
(其实也没多高了,反正跑不了要用做偏移量的加法来寻址)

内存碎片和内存池:

扩展阅读:

C语言结构体里的成员数组和指针 | 酷 壳 - CoolShell


本篇完。

可以自己模拟实现:atoi + strncat + strncpy。

956bc1e8858a2dc88b70812934259a0e.gif

目录
相关文章
|
1月前
|
C语言 C++
C语言 之 内存函数
C语言 之 内存函数
34 3
|
30天前
|
程序员 C++ 容器
在 C++中,realloc 函数返回 NULL 时,需要手动释放原来的内存吗?
在 C++ 中,当 realloc 函数返回 NULL 时,表示内存重新分配失败,但原内存块仍然有效,因此需要手动释放原来的内存,以避免内存泄漏。
|
25天前
|
存储 C语言
【c语言】字符串函数和内存函数
本文介绍了C语言中常用的字符串函数和内存函数,包括`strlen`、`strcpy`、`strcat`、`strcmp`、`strstr`、`strncpy`、`strncat`、`strncmp`、`strtok`、`memcpy`、`memmove`和`memset`等函数的使用方法及模拟实现。文章详细讲解了每个函数的功能、参数、返回值,并提供了具体的代码示例,帮助读者更好地理解和掌握这些函数的应用。
21 0
|
9天前
|
C语言
c语言调用的函数的声明
被调用的函数的声明: 一个函数调用另一个函数需具备的条件: 首先被调用的函数必须是已经存在的函数,即头文件中存在或已经定义过; 如果使用库函数,一般应该在本文件开头用#include命令将调用有关库函数时在所需要用到的信息“包含”到本文件中。.h文件是头文件所用的后缀。 如果使用用户自己定义的函数,而且该函数与使用它的函数在同一个文件中,一般还应该在主调函数中对被调用的函数做声明。 如果被调用的函数定义出现在主调函数之前可以不必声明。 如果已在所有函数定义之前,在函数的外部已做了函数声明,则在各个主调函数中不必多所调用的函数在做声明
25 6
|
29天前
|
存储 缓存 C语言
【c语言】简单的算术操作符、输入输出函数
本文介绍了C语言中的算术操作符、赋值操作符、单目操作符以及输入输出函数 `printf` 和 `scanf` 的基本用法。算术操作符包括加、减、乘、除和求余,其中除法和求余运算有特殊规则。赋值操作符用于给变量赋值,并支持复合赋值。单目操作符包括自增自减、正负号和强制类型转换。输入输出函数 `printf` 和 `scanf` 用于格式化输入和输出,支持多种占位符和格式控制。通过示例代码详细解释了这些操作符和函数的使用方法。
35 10
|
22天前
|
存储 算法 程序员
C语言:库函数
C语言的库函数是预定义的函数,用于执行常见的编程任务,如输入输出、字符串处理、数学运算等。使用库函数可以简化编程工作,提高开发效率。C标准库提供了丰富的函数,满足各种需求。
|
28天前
|
机器学习/深度学习 C语言
【c语言】一篇文章搞懂函数递归
本文详细介绍了函数递归的概念、思想及其限制条件,并通过求阶乘、打印整数每一位和求斐波那契数等实例,展示了递归的应用。递归的核心在于将大问题分解为小问题,但需注意递归可能导致效率低下和栈溢出的问题。文章最后总结了递归的优缺点,提醒读者在实际编程中合理使用递归。
54 7
|
28天前
|
存储 编译器 程序员
【c语言】函数
本文介绍了C语言中函数的基本概念,包括库函数和自定义函数的定义、使用及示例。库函数如`printf`和`scanf`,通过包含相应的头文件即可使用。自定义函数需指定返回类型、函数名、形式参数等。文中还探讨了函数的调用、形参与实参的区别、return语句的用法、函数嵌套调用、链式访问以及static关键字对变量和函数的影响,强调了static如何改变变量的生命周期和作用域,以及函数的可见性。
29 4
|
1月前
|
存储 编译器 C语言
C语言函数的定义与函数的声明的区别
C语言中,函数的定义包含函数的实现,即具体执行的代码块;而函数的声明仅描述函数的名称、返回类型和参数列表,用于告知编译器函数的存在,但不包含实现细节。声明通常放在头文件中,定义则在源文件中。
|
1月前
|
C语言
c语言回顾-函数递归(上)
c语言回顾-函数递归(上)
33 2