【HBase从入门到精通系列】如何避免HBase写入过快引起的各种问题

简介: 首先我们简单回顾下整个写入流程 client api ==> RPC ==> server IPC ==> RPC queue ==> RPC handler ==> write WAL ==> write memstore ==> flush to filesystem 整个写入流程从客户端调用API开始,数据会通过protobuf编码成一个请求,通过scoket实现的IPC模块被送达server的RPC队列中。

首先我们简单回顾下整个写入流程

client api ==> RPC ==>  server IPC ==> RPC queue ==> RPC handler ==> write WAL ==> write memstore ==> flush to  filesystem

整个写入流程从客户端调用API开始,数据会通过protobuf编码成一个请求,通过scoket实现的IPC模块被送达server的RPC队列中。最后由负责处理RPC的handler取出请求完成写入操作。写入会先写WAL文件,然后再写一份到内存中,也就是memstore模块,当满足条件时,memstore才会被flush到底层文件系统,形成HFile。


当写入过快时会遇见什么问题?

写入过快时,memstore的水位会马上被推高。
你可能会看到以下类似日志:

RegionTooBusyException: Above memstore limit, regionName=xxxxx ...

这个是Region的memstore占用内存大小超过正常的4倍,这时候会抛异常,写入请求会被拒绝,客户端开始重试请求。当达到128M的时候会触发flush memstore,当达到128M * 4还没法触发flush时候会抛异常来拒绝写入。两个相关参数的默认值如下:

hbase.hregion.memstore.flush.size=128M
hbase.hregion.memstore.block.multiplier=4

或者这样的日志:

regionserver.MemStoreFlusher: Blocking updates on hbase.example.host.com,16020,1522286703886: the global memstore size 1.3 G is >= than blocking 1.3 G size
regionserver.MemStoreFlusher: Memstore is above high water mark and block 528ms

这是所有region的memstore内存总和开销超过配置上限,默认是配置heap的40%,这会导致写入被阻塞。目的是等待flush的线程把内存里的数据flush下去,否则继续允许写入memestore会把内存写爆

hbase.regionserver.global.memstore.upperLimit=0.4  # 较旧版本,新版本兼容
hbase.regionserver.global.memstore.size=0.4 # 新版本

当写入请求由于达到memstore上限而被阻塞,队列会开始积压,如果运气不好最后会导致OOM,你可能会发现JVM由于OOM crash或者看到如下类似日志:

ipc.RpcServer: /192.168.x.x:16020 is unable to read call parameter from client 10.47.x.x
java.lang.OutOfMemoryError: Java heap space

HBase这里我认为有个很不好的设计,捕获了OOM异常却没有终止进程。这时候进程可能已经没法正常运行下去了,你还会在日志里发现很多其它线程也抛OOM异常。比如stop可能根本stop不了,RS可能会处于一种僵死状态。


如何避免RS OOM?

一种是加快flush速度:

hbase.hstore.blockingWaitTime = 90000 ms
hbase.hstore.flusher.count = 2
hbase.hstore.blockingStoreFiles = 10

当达到hbase.hstore.blockingStoreFiles配置上限时,会导致flush阻塞等到compaction工作完成。阻塞时间是hbase.hstore.blockingWaitTime,可以改小这个时间。hbase.hstore.flusher.count可以根据机器型号去配置,可惜这个数量不会根据写压力去动态调整,配多了,非导入数据多场景也没用,改配置还得重启。

同样的道理,如果flush加快,意味这compaction也要跟上,不然文件会越来越多,这样scan性能会下降,开销也会增大。

hbase.regionserver.thread.compaction.small = 1
hbase.regionserver.thread.compaction.large = 1

增加compaction线程会增加CPU和带宽开销,可能会影响正常的请求。如果不是导入数据,一般而言是够了。好在这个配置在云HBase内是可以动态调整的,不需要重启。

上述配置都需要人工干预,如果干预不及时server可能已经OOM了,这时候有没有更好的控制方法?
hbase.ipc.server.max.callqueue.size = 1024 * 1024 * 1024 # 1G

直接限制队列堆积的大小。当堆积到一定程度后,事实上后面的请求等不到server端处理完,可能客户端先超时了。并且一直堆积下去会导致OOM,1G的默认配置需要相对大内存的型号。当达到queue上限,客户端会收到CallQueueTooBigException 然后自动重试。通过这个可以防止写入过快时候把server端写爆,有一定反压作用。线上使用这个在一些小型号稳定性控制上效果不错。

相关文章
|
架构师 Java 数据库连接
Java异常处理的20个最佳实践:告别系统崩溃
你是否在为如何处理异常而困扰? 你是否曾被面试官问道Java异常处理的最佳实践有哪些? 本文汇总了Java异常处理的20个最佳实践:让你告别系统崩溃,面试游刃有余
1685 2
Java异常处理的20个最佳实践:告别系统崩溃
|
分布式计算 分布式数据库 Spark
17张图带你彻底理解Hudi Upsert原理
17张图带你彻底理解Hudi Upsert原理
1080 1
|
SQL 存储 缓存
Hadoop-Impala优化十大指导原则和最佳实践(二)
简介: 以下是性能准则和最佳做法。您可以使用在规划过程中实验,和hadoop集群一起进行impala的性能调整。所有这些信息也可在文档的其他地方更详细的impala文档;以下是优化的方法措施,强调优化调优技术提供最高的投资回报
1935 0
|
存储 缓存 大数据
Starrocks执行查询报错:Memory of process exceed limit. Used: XXX, Limit: XXX. Mem usage has exceed the limit of BE
Starrocks执行查询报错:Memory of process exceed limit. Used: XXX, Limit: XXX. Mem usage has exceed the limit of BE
|
SQL 存储 Oracle
【赵渝强老师】Hive的分区表
Hive的分区表与Oracle、MySQL类似,通过分区条件将数据分隔存储,提高查询效率。本文介绍了静态分区表和动态分区表的创建与使用方法,包括具体SQL语句和执行计划分析,附带视频讲解。静态分区表需显式指定分区条件,而动态分区表则根据插入数据自动创建分区。
1392 1
|
前端开发 JavaScript 测试技术
如何制作网页
创建自己的网站涉及多个步骤,从确定主题到最终测试和发布。本文详细介绍了每个步骤:首先明确网站目的和受众;其次设计直观易用的布局;选择符合主题的颜色和字体;撰写清晰简洁的内容;优化加载速度;全面测试功能和兼容性;选择托管服务并注册域名;最后通过SEO、社交媒体和广告进行推广。注意事项包括关注用户体验、学习基本编码知识,并考虑网站的扩展性和可维护性。遵循这些步骤,你将能创建一个美观且实用的网站。
1025 0
|
机器学习/深度学习 分布式计算 安全
Hadoop集群常见报错汇总
这篇博客总结了Hadoop集群中可能遇到的各种常见错误,包括Kerberos认证问题、配置错误、权限问题等,并为每个问题提供了详细的错误复现、原因分析以及相应的解决方案。
1953 1
Hadoop集群常见报错汇总
|
SQL 关系型数据库 数据库连接
ClickHouse(20)ClickHouse集成PostgreSQL表引擎详细解析
ClickHouse的PostgreSQL引擎允许直接查询和插入远程PostgreSQL服务器的数据。`CREATE TABLE`语句示例展示了如何定义这样的表,包括服务器信息和权限。查询在只读事务中执行,简单筛选在PostgreSQL端处理,复杂操作在ClickHouse端完成。`INSERT`通过`COPY`命令在PostgreSQL事务中进行。注意,数组类型的处理和Nullable列的行为。示例展示了如何从PostgreSQL到ClickHouse同步数据。一系列的文章详细解释了ClickHouse的各种特性和表引擎。
654 0
|
负载均衡 安全 Java
Spring Cloud中的服务网格实现
Spring Cloud中的服务网格实现
|
Web App开发 移动开发 程序员
程序员必知:Verto模块启用
程序员必知:Verto模块启用
291 0