基于多目标粒子群算法的配电网储能选址定容(含MATLAB程序)

简介: 基于多目标粒子群算法的配电网储能选址定容(含MATLAB程序)

一、主要内容

程序是对文章《基于多目标粒子群算法的配电网储能选址定容》的方法复现,具体内容如下:

以系统节点电压水平(电网脆弱性)、网络损耗以及储能系统总容量为目标建立了储能选址定容优化模型。求解过程中提出了一种改进多目标粒子群算法(improved multi—objective particle swarm optimizer,IMOPSO)。该算法根据粒子与种群最优粒子的距离来指导惯性权重的取值,使得各粒子的惯性权重可以自适应调整,并在二者距离较小时引入交叉变异操作,避免陷入局部最优解,同时采用动态密集距离排序来更新非劣解集并指导种群全局最优解的选取,在保持解集规模的同时使解的分布更均匀。为避免决策者偏好对最终结果的影响,采用基于信息熵的序数偏好法从最优Pareto解集中选取储能的最优接入方案。以IEEE33节点配电系统为例进行仿真验证,结果表明该方法在储能选址定容问题求解中具有很好的收敛性以及全局搜索能力。

二、主要流程

储能选址定容在智能算法中的实现过程不难,刚开始变量定义部分,主要是涉及储能选址的位置、容量和储能出力,以这两部分变量作为优化变量,通过设置最大值和最小值确定变量上下限范围。

下一步的关键点就是约束处理部分,对于储能soc约束,在单目标实现过程中可以采用罚函数的表达方式,但是在多目标求解过程中最好是采用绝对约束表达方式,因为多目标的帕累托解集有可能将不满足约束条件的目标值也筛选进入解集中,就会导致解集的不准确。

最后就是设置目标值,对于配电网节点系统,要注意潮流计算方式的选择和储能出力对系统影响,然后设置不同的目标值。

上述都设置清楚后,采用智能算法进行求解就简单了,多目标算法要注意采用拥挤距离识别方法保证解集分布的合理性(ps:之前有同学付费要解决解集分布不合理问题,被我拒绝了,直接发给他这个程序参考一下完美解决,这种方法已经很成熟,也有很多的参考,很容易解决,没必要花冤枉钱)。

三、部分程序

%% ***************导入网络参数******************%
 
FH1=[2084,1933,1782,1657,1564,1612,1982,2189,2412,2729,2905,3096,3189,3073,3000,2917,3149,3355,3526,3620,3715,3276,2911,2309];
 
% plot(FH1)%输入全天的负荷数据
 
WT1=[201,191,193,201,205,210,204,180,139,110,94,88,76,79,82,86,90,95,105,117,129,141,158,187];   %输入全天的风电数据
 
% plot(WT1)
 
PV1=[0,0,0,0,0,0,0,14,29,76,121,154,193,205,193,174,122,69,45,11,0,0,0,0];   %输入全天的光伏数据
 
% plot(PV1)
 
Generator=xlsread('GEN.xlsx','A2:U8');   %输入发电机矩阵参数,其中20,14接风电;9,30接光伏
 
Bus=xlsread('BUS.xlsx','A2:M34');    %输入负荷矩阵参数,matpower数据格式,第3列和第4列为有功和无功负荷所占总有功和无功负荷比例
 
FH=FH1/1000;   %将kw化为mw,调整渗透率
 
WT=2*WT1/1000;
 
PV=2*PV1/1000;
 
FHBus=Bus;
 
T=24;
 
for t=1:T
 
    FHP(:,t)=FH(1,t)*Bus(:,3);      %求各个时间段的有功负荷
 
    FHQ(:,t)=FH(1,t)*2.3/3.715*Bus(:,4);   %求各个时间段的无功负荷【常数什么意思】
 
end
 
% *******************导入结束********************%
 
%% ****************决策空间的设置1**************%
 
maxFun=3;                    %三个目标函数
 
 fff=[0,1;0.05,0.4;0.2,2]; %各个目标函数的最小值和最大值,即绝对正理想解和绝对负理想解,可分别设单目标求解
 
%fff=[0,0.4;30,100;10000,20000];  
 
n = 50;                         % 初始种群个数
 
d = 52;                          % 空间维数,即决策变量(各设备控制量)个数
 
maxIterations = 50;            % 最大迭代次数
 
wmax=0.9;          %maximum of inertia factor,最大惯性系数
 
wmin=0.4;          %minimum of inertia factor,最小惯性系数
 
c1=1.4962;              %1.4962; %learning factor1,自我学习因子
 
c2=1.4962;              %1.4962; %learning factor2,群体学习因子
 
soc=0.5;
 
 
 
X1limit = [2, 33];              % 设置选址参数限制
 
%X2limit = [0.2, 2.5];              % 设置容量参数限制,统一化成MW
 
X2limit = [1, 2];              % 设置容量参数限制,统一化成MW
 
V1limit = [-31, 31];               % 设置速度限制
 
%V2limit = [-2.3, 2.3];              % 设置速度限制
 
V2limit = [-1.8, 1.8];
 
Xmax=[X1limit(1,2),X1limit(1,2),X2limit(1,2),X2limit(1,2)];
 
Xmin=[X1limit(1,1),X1limit(1,1),X2limit(1,1),X2limit(1,1)];
 
dX=Xmax-Xmin;
 
Vmax=dX;
 
%***********决策空间设置1结束**********%
 
 
 
%% ******种群位置与速度初始化*******%    
 
X1 = round(X1limit(1, 1) + (X1limit(1, 2) - X1limit(1, 1)) * rand(n, 2));        %初始种群的位置(节点位置)四舍五入取整
 
X2 = X2limit(1, 1)+(X2limit(1, 2)-X2limit(1, 1)) * rand(n, 2);       %初始种群的位置(容量大小)
 
X = [X1,X2];                %初始种群的位置
 
 
 
V1 = V1limit(1, 2) * (2*rand(n, 2)-1);     %初始种群的速度
 
V2 = V2limit(1, 2) * (2*rand(n, 2)-1);     %初始种群的速度
 
V=[V1,V2];                      % 初始种群的速度
 
%*****24小时储能出力变量初始化*********%
 
E1=zeros(n,T+1);   %储能1各时段的剩余容量,即SOC
 
E2=zeros(n,T+1);   %储能2各时段的容量
 
E1(:,1)=0.5*X(:,3);   %初始容量设为50%总容量【拟采用40%】
 
E2(:,1)=0.5*X(:,4);
 
x1limit = [-0.5, 0.5];              % 设置储能有功出力约束
 
xmax=[Xmax,x1limit(1,2)*ones(1,48)];
 
xmin=[Xmin,x1limit(1,1)*ones(1,48)];
 
dx=xmax-xmin;
 
v1limit = [-1, 1];                % 设置储能有功出力约束
 
vmax=dx;
 
%******变量维数(总共52维)解释:位置1,位置2,额定容量1,额定容量2,储能1的24小时出力,储能2的24小时出力
 
x=[X,bsxfun(@times,x1limit(1,2)*ones(1,48),(2*rand(n, 48)-1))];
 
v=[V,bsxfun(@times,v1limit(1,2)*ones(1,48),(2*rand(n, 48)-1))];

四、程序结果

程序下载方式可私信或评论方式获取!

相关文章
|
6月前
|
存储 算法 C语言
"揭秘C语言中的王者之树——红黑树:一场数据结构与算法的华丽舞蹈,让你的程序效率飙升,直击性能巅峰!"
【8月更文挑战第20天】红黑树是自平衡二叉查找树,通过旋转和重着色保持平衡,确保高效执行插入、删除和查找操作,时间复杂度为O(log n)。本文介绍红黑树的基本属性、存储结构及其C语言实现。红黑树遵循五项基本规则以保持平衡状态。在C语言中,节点包含数据、颜色、父节点和子节点指针。文章提供了一个示例代码框架,用于创建节点、插入节点并执行必要的修复操作以维护红黑树的特性。
139 1
|
3月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
99 1
|
3月前
|
存储 缓存 算法
通过优化算法和代码结构来提升易语言程序的执行效率
通过优化算法和代码结构来提升易语言程序的执行效率
|
3月前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
67 3
|
4月前
|
存储 缓存 算法
如何通过优化算法和代码结构来提升易语言程序的执行效率?
如何通过优化算法和代码结构来提升易语言程序的执行效率?
101 5
|
4月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
4月前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
4月前
|
缓存 分布式计算 监控
算法优化:提升程序性能的艺术
【10月更文挑战第20天】算法优化:提升程序性能的艺术
|
8月前
|
算法 安全 数据库
基于结点电压法的配电网状态估计算法matlab仿真
**摘要** 该程序实现了基于结点电压法的配电网状态估计算法,旨在提升数据的准确性和可靠性。在MATLAB2022a中运行,显示了状态估计过程中的电压和相位估计值,以及误差随迭代变化的图表。算法通过迭代计算雅可比矩阵,结合基尔霍夫定律解决线性方程组,估算网络节点电压。状态估计过程中应用了高斯-牛顿或莱文贝格-马夸尔特法,处理量测数据并考虑约束条件,以提高估计精度。程序结果以图形形式展示电压幅值和角度估计的比较,以及估计误差的演变,体现了算法在处理配电网状态估计问题的有效性。
|
8月前
|
机器学习/深度学习 并行计算 搜索推荐
程序技术好文:桶排序算法及其Java实现
程序技术好文:桶排序算法及其Java实现
53 0

热门文章

最新文章