R语言SOM神经网络聚类、多层感知机MLP、PCA主成分分析可视化银行客户信用数据实例1

简介: R语言SOM神经网络聚类、多层感知机MLP、PCA主成分分析可视化银行客户信用数据实例


自组织地图(SOM)是一种强大的无监督数据可视化工具,它通过降维技术,在较低(通常二维)的空间中有效地展示高维数据集的内在结构和特征。在本文中,我们将详细探讨如何帮助客户利用R语言实现SOM,可视化银行客户的信用人口属性数据点击文末“阅读原文”获取完整代码数据

相关视频

image.png

image.png

首先,我们对数据集进行了初步的探索,通过summary(data)命令获取了数据的统计概览,有助于我们理解数据的分布和特性。然而,由于直接展示原始数据表格较为冗长,此处省略具体统计信息,并通过图片代替,以直观地展示数据的分布情况。

summary(data)

a75c8c6cbf288ebcb7c608815c2c0f13.png

训练SOM

接下来,我们利用SOM算法对数据进行训练。通过设置im = 10, ydim=10, topo="hexagonal"等参数,我们构建了一个具有10x10网格的六边形拓扑结构的SOM模型。训练过程中,SOM算法通过迭代优化,逐渐将数据点映射到二维网格上的不同位置,形成聚类结构。

im = 10, ydim=10, topo="hexagonal")

查看训练过程的聚类距离

为了评估训练效果,我们查看了聚类过程中的距离变化。通过计算不同迭代次数下聚类中心的距离,我们可以观察到随着训练的进行,聚类中心逐渐趋于稳定,表明SOM模型已经成功捕捉到了数据的内在结构。

13dbb20067f4fd70dad0162a22b55fec.png

对聚类结果进行可视化

随后,我们对聚类结果进行了可视化。通过绘制不同聚类在二维网格上的分布图,我们可以清晰地看到不同类别的客户在信用人口属性上的差异和相似性。

ae6e55ee05b70502666fe1234e154ac4.png


762d814537f40471eaaaaae3a50a52ef.png

8a8067c95470f17ed7a35c593d0392d3.png 3b3c69a0bda542b28900028cde61d37c.png 68d159ef20048727898492235d4cc60e.png

89d8a956d41677560af352a76956d93b.png

此外,我们还计算了针对不同聚类大小的k均值WCSS(Within-Cluster Sum of Squares)度量。WCSS度量用于评估聚类效果的好坏,通过比较不同聚类数量下的WCSS值,我们可以确定一个理想的聚类数量。我们通过绘制WCSS与聚类数量的关系图,发现当聚类数量为6时,WCSS值达到一个相对较小的稳定点,因此我们将数据划分为6个类别进行后续分析。

plot(1:15, wss, type="b", xlab="N


R语言SOM神经网络聚类、多层感知机MLP、PCA主成分分析可视化银行客户信用数据实例2:https://developer.aliyun.com/article/1501163

相关文章
|
2月前
|
机器学习/深度学习 数据可视化 Windows
深度学习笔记(七):如何用Mxnet来将神经网络可视化
这篇文章介绍了如何使用Mxnet框架来实现神经网络的可视化,包括环境依赖的安装、具体的代码实现以及运行结果的展示。
55 0
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的魔法:如何用神经网络解锁数据的奥秘
在人工智能的璀璨星空中,深度学习犹如一颗最亮的星,它以其强大的数据处理能力,改变了我们对世界的认知方式。本文将深入浅出地介绍深度学习的核心概念、工作原理及其在不同领域的应用实例,让读者能够理解并欣赏到深度学习技术背后的奇妙和强大之处。
48 3
|
22天前
|
弹性计算 监控 数据库
制造企业ERP系统迁移至阿里云ECS的实例,详细介绍了从需求分析、数据迁移、应用部署、网络配置到性能优化的全过程
本文通过一个制造企业ERP系统迁移至阿里云ECS的实例,详细介绍了从需求分析、数据迁移、应用部署、网络配置到性能优化的全过程,展示了企业级应用上云的实践方法与显著优势,包括弹性计算资源、高可靠性、数据安全及降低维护成本等,为企业数字化转型提供参考。
43 5
|
4月前
|
机器学习/深度学习 传感器 自然语言处理
深度学习的魔法:如何用神经网络解锁数据的秘密
在这个数字信息爆炸的时代,深度学习技术如同一把钥匙,揭开了数据隐藏的层层秘密。本文将深入浅出地探讨深度学习的核心概念、关键技术和实际应用,带领读者领略这一领域的奥秘与魅力。通过生动的比喻和直观的解释,我们将一起走进神经网络的世界,看看这些由数据驱动的“大脑”是如何学习和成长的。无论你是科技爱好者还是行业新手,这篇文章都将为你打开一扇通往未来的大门。
|
1月前
|
网络协议 Go
Go语言网络编程的实例
【10月更文挑战第27天】Go语言网络编程的实例
22 7
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习与神经网络:探索复杂数据的表示
【9月更文挑战第26天】深度学习作为人工智能领域的明珠,通过神经网络自动从大数据中提取高级特征,实现分类、回归等任务。本文介绍深度学习的基础、张量表示、非线性变换、反向传播及梯度下降算法,并探讨其在计算机视觉、自然语言处理等领域的应用与挑战。未来,深度学习将更加智能化,揭示数据背后的奥秘。
|
2月前
|
机器学习/深度学习 数据可视化 Linux
Seaborn可视化学习笔记(一):可视化神经网络权重分布情况
这篇文章是关于如何使用Seaborn库来可视化神经网络权重分布的教程,包括函数信息、测试代码和实际应用示例。
56 0
|
4月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
59 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
|
4月前
|
存储 Linux 网络安全
【Azure 应用服务】App Service For Linux 如何在 Web 应用实例上住抓取网络日志
【Azure 应用服务】App Service For Linux 如何在 Web 应用实例上住抓取网络日志
|
3月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。

热门文章

最新文章