人工智能平台PAI产品使用合集之机器学习PAI可以通过再建一个done分区或者使用instance.status来进行部署吗

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。

问题一:机器学习PAI只能用再建一个 done分区的方式吗?instance.status 这种方式可行吗?

机器学习PAI只能用再建一个 done分区的方式吗?instance.status 这种方式可行吗?



参考答案:

没有表分区对应instance id的概念。但是你可以从openapi拿到所有实例,https://help.aliyun.com/zh/dataworks/developer-reference/api-listinstances



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/566647



问题二:机器学习PAI我如何知道某个表某个分区的instances id呢?

机器学习PAI如果我想本地查某个表的某个分区的状态,

我看到pyodps可以这样。

instance = o.get_instance('2016042605520945g9k5pvyi2')

instance.status

但是我如何知道某个表某个分区的instances id呢?

而且odps.list_instances() 得到的instances id 与dataworks运维里查的不一样。

odps.list_instances() 的结果是前面数字,后面字母。

dataworks运维里查的只有一串数字



参考答案:

可以参考下

import datetime

import sys

from odps import ODPS

获取前1天或N天的日期,beforeOfDay=1:前1天;beforeOfDay=N:前N天

def getdate(beforeOfDay):

today = datetime.datetime.now()

# 计算偏移量
offset = datetime.timedelta(days=-beforeOfDay)
# 获取想要的日期的时间
re_date = (today + offset).strftime('%Y%m%d')
return re_date

table上传完成后在signal table中创建一个done分区

signal_table = '{table_name}'

round = 60

sec = 300

每5分钟检查一次,一共60次,共等待5个小时

日期

day = getdate(1)

print(day)

得到表

import time

while round > 0:

t = o.get_table(signal_table)

exist = t.exist_partition('day=%s.done'%(day))
if exist:
    print("found partition %s.done"%(day))
    sys.exit(0)
print(time.asctime( time.localtime(time.time()) ),",can not found partition %s.done"%(day))
time.sleep(sec)

print("can not found partition %s.done"%(day))

sys.exit(1)


关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/566645



问题三:机器学习PAI_rec 怎么配置用户新增的特征?是在这个里面配置?

机器学习PAI_rec 怎么配置用户新增的特征?是在这个里面配置?



参考答案:

https://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/pairec/docs/pairec/html/config/feature.html



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/566639



问题四:使用通义灵码时,对话框字体怎么设置?

使用通义灵码时,对话框字体怎么设置?



参考答案:

目前还不支持,我们会尽快优化



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/566520



问题五:阿里AI克隆人声模型

你好,我使用了阿里AI克隆人声模型,请问训练AI大概要多长时间?



参考答案:

阿里AI克隆人声模型的训练时间取决于很多因素,例如样本的数量和质量,训练环境等因素,一般需要几天到几周不等的时间



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/566000

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
17天前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
54 1
|
2月前
|
机器学习/深度学习 算法 数据挖掘
Python数据分析革命:Scikit-learn库,让机器学习模型训练与评估变得简单高效!
在数据驱动时代,Python 以强大的生态系统成为数据科学的首选语言,而 Scikit-learn 则因简洁的 API 和广泛的支持脱颖而出。本文将指导你使用 Scikit-learn 进行机器学习模型的训练与评估。首先通过 `pip install scikit-learn` 安装库,然后利用内置数据集进行数据准备,选择合适的模型(如逻辑回归),并通过交叉验证评估其性能。最终,使用模型对新数据进行预测,简化整个流程。无论你是新手还是专家,Scikit-learn 都能助你一臂之力。
132 8
|
3月前
|
监控 数据安全/隐私保护 异构计算
借助PAI-EAS一键部署ChatGLM,并应用LangChain集成外部数据
【8月更文挑战第8天】借助PAI-EAS一键部署ChatGLM,并应用LangChain集成外部数据
95 1
|
3月前
|
机器学习/深度学习 数据采集 人工智能
揭秘大型机器学习模型背后的秘密:如何在技术深度与广度之间找到完美平衡点,探索那些鲜为人知的设计、训练与部署技巧,让你的作品脱颖而出!
【8月更文挑战第21天】大型机器学习模型是人工智能的关键方向,借助不断增强的计算力和海量数据,已实现在学术与产业上的重大突破。本文深入探讨大型模型从设计到部署的全过程,涉及数据预处理、模型架构(如Transformer)、训练技巧及模型压缩技术,旨在面对挑战时提供解决方案,促进AI技术的实用化进程。
70 1
|
3月前
|
机器学习/深度学习 监控 API
基于云计算的机器学习模型部署与优化
【8月更文第17天】随着云计算技术的发展,越来越多的数据科学家和工程师开始使用云平台来部署和优化机器学习模型。本文将介绍如何在主要的云计算平台上部署机器学习模型,并讨论模型优化策略,如模型压缩、超参数调优以及分布式训练。
654 2
|
3月前
|
机器学习/深度学习 JSON API
【Python奇迹】FastAPI框架大显神通:一键部署机器学习模型,让数据预测飞跃至Web舞台,震撼开启智能服务新纪元!
【8月更文挑战第16天】在数据驱动的时代,高效部署机器学习模型至关重要。FastAPI凭借其高性能与灵活性,成为搭建模型API的理想选择。本文详述了从环境准备、模型训练到使用FastAPI部署的全过程。首先,确保安装了Python及相关库(fastapi、uvicorn、scikit-learn)。接着,以线性回归为例,构建了一个预测房价的模型。通过定义FastAPI端点,实现了基于房屋大小预测价格的功能,并介绍了如何运行服务器及测试API。最终,用户可通过HTTP请求获取预测结果,极大地提升了模型的实用性和集成性。
241 1
|
3月前
|
开发者 算法 虚拟化
惊爆!Uno Platform 调试与性能分析终极攻略,从工具运用到代码优化,带你攻克开发难题成就完美应用
【8月更文挑战第31天】在 Uno Platform 中,调试可通过 Visual Studio 设置断点和逐步执行代码实现,同时浏览器开发者工具有助于 Web 版本调试。性能分析则利用 Visual Studio 的性能分析器检查 CPU 和内存使用情况,还可通过记录时间戳进行简单分析。优化性能涉及代码逻辑优化、资源管理和用户界面简化,综合利用平台提供的工具和技术,确保应用高效稳定运行。
83 0
|
3月前
|
前端开发 开发者 设计模式
揭秘Uno Platform状态管理之道:INotifyPropertyChanged、依赖注入、MVVM大对决,帮你找到最佳策略!
【8月更文挑战第31天】本文对比分析了 Uno Platform 中的关键状态管理策略,包括内置的 INotifyPropertyChanged、依赖注入及 MVVM 框架。INotifyPropertyChanged 方案简单易用,适合小型项目;依赖注入则更灵活,支持状态共享与持久化,适用于复杂场景;MVVM 框架通过分离视图、视图模型和模型,使状态管理更清晰,适合大型项目。开发者可根据项目需求和技术栈选择合适的状态管理方案,以实现高效管理。
43 0
|
3月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
全面解析TensorFlow Lite:从模型转换到Android应用集成,教你如何在移动设备上轻松部署轻量级机器学习模型,实现高效本地推理
【8月更文挑战第31天】本文通过技术综述介绍了如何使用TensorFlow Lite将机器学习模型部署至移动设备。从创建、训练模型开始,详细演示了模型向TensorFlow Lite格式的转换过程,并指导如何在Android应用中集成该模型以实现预测功能,突显了TensorFlow Lite在资源受限环境中的优势及灵活性。
219 0
|
3月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
TensorFlow Serving 部署指南超赞!让机器学习模型上线不再困难,轻松开启高效服务之旅!
【8月更文挑战第31天】TensorFlow Serving是一款高性能开源服务系统,专为部署机器学习模型设计。本文通过代码示例详细介绍其部署流程:从安装TensorFlow Serving、训练模型到配置模型服务器与使用gRPC客户端调用模型,展示了一站式模型上线解决方案,使过程变得简单高效。借助该工具,你可以轻松实现模型的实际应用。
51 0

相关产品

  • 人工智能平台 PAI