人工智能平台PAI产品使用合集之user_id和item_idd在train/predict的时候发挥什么作用

本文涉及的产品
交互式建模 PAI-DSW,5000CU*H 3个月
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。

问题一:请教一下机器学习PAI,改成CHR(30)是否可以,改了后后续的代码需要怎么改动吗?

请教一下机器学习PAI,对于lookup 特征 如果k v 之间的连接文档中说需要用“:”,改成CHR(30)是否可以,改了后后续的代码需要怎么改动吗?我现在改成CHR(30)后 jar生成特征取不到对应的数值 ,然后这个特征上线应该怎么配置吗? 我们线上用“:”的时候,测试环境没跑通 不太清楚是什么环节出问题了,谢谢



参考答案:

这个 : 目前还不支持改,fg 里面都是用的这个 : 符号。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/570927



问题二:机器学习PAI指标差别比较大,有结论吗?

机器学习PAI ODPS的PAI使用训练好的DSSM模型使用同样的ckpt进行evaluate,单个worker多次evaluate的结果都不一致并且recall_at_k指标差别比较大,有结论吗?



参考答案:

根据已知信息,单个worker多次评估的结果不一致且recall_at_k指标差异较大可能是由于模型评估过程中存在一些随机性导致的。建议进一步分析模型评估的具体流程和参数设置,以找出导致结果差异的原因,并进行调整或改进。可以尝试指定不同的model_dir路径和checkpoint路径来观察结果是否稳定一致,同时检查训练和评估的参数配置是否一致,比如worker节点数量和资源配置,以及其他依赖表的配置。如果以上方法仍无法解决问题,可能需要进一步检查模型训练的稳定性和模型本身的问题。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/570926



问题三:机器学习PA如何指定使用最优的训练的ckpt?

机器学习PAI在ODPS上使用PAI命令调用easyrec进行evaluate的时候,如何指定使用最优的训练的ckpt?



参考答案:

在ODPS上使用PAI命令调用easyrec进行evaluate的时候,可以通过在命令中指定-Dcheckpoint_path参数来使用最优的训练的ckpt。例如,可以使用以下命令指定使用oss://easyrec/ckpt/MultiTower/model.ckpt-1000作为checkpoint_path:

pai -name easyrec -project algo_platform -Dcheckpoint_path=oss://easyrec/ckpt/MultiTower/model.ckpt-1000 -D...(其他参数) evaluate



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/570925



问题四:机器学习PAI DSSM的参数配置里可以去掉吗?

机器学习PAI DSSM的参数配置里可以去掉吗?例如图中就不给出两个塔的id项

文档里参数配置这一块对这个id配置有点语焉不详



参考答案:

现在的版本是没有实际用到,历史原因,不太能去掉了。但不用太care这个,也没有检查这两个id必须出现在特征里。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/570923



问题五:请教一下机器学习PAI DSSM这两个id在train/predict的时候发挥什么作用?

请教一下机器学习PAI DSSM这两个id在train/predict的时候发挥什么作用?我看了一下源码似乎没有找到这两个参数解析的踪迹。文档内这两个id对应的列名在DSSM模型的输入配置部分出现了,原理上不对哇?我们每一个user_id都是unique的,对于新用户承接而言模型没有见过它的user_id信息,我们只希望用他们的画像特征信息做u2i召回。如果模型强制要求user_id做输入,是不是意思是easyrec的DSSM模型完全不能用于新用户的item召回?



参考答案:

user_id不用做特征也可以的,没有强制要求user_id用作特征



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/570922

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
13天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下,如何利用机器学习进行数据分类
【8月更文挑战第33天】本文将介绍一种使用Python编程语言和scikit-learn库实现的简单机器学习算法。我们将使用KNN(k-近邻)算法对鸢尾花数据集进行分类。通过这篇文章,你将学会如何使用机器学习技术解决实际问题。
|
4天前
|
机器学习/深度学习 人工智能 算法
探索人工智能:机器学习的奥秘与应用
本文深入浅出地探讨了人工智能领域中的核心技术——机器学习,揭示了其背后的原理和广泛的实际应用。通过浅显易懂的语言和生动的例子,本文旨在为非专业读者打开一扇了解并利用机器学习的大门,同时激发对这一前沿技术的兴趣和思考。
18 1
|
28天前
|
机器学习/深度学习 人工智能 数据处理
【人工智能】项目实践与案例分析:利用机器学习探测外太空中的系外行星
探测外太空中的系外行星是天文学和天体物理学的重要研究领域。随着望远镜观测技术的进步和大数据的积累,科学家们已经能够观测到大量恒星的光度变化,并尝试从中识别出由行星凌日(行星经过恒星前方时遮挡部分光线)引起的微小亮度变化。然而,由于数据量巨大且信号微弱,传统方法难以高效准确地识别所有行星信号。因此,本项目旨在利用机器学习技术,特别是深度学习,从海量的天文观测数据中自动识别和分类系外行星的信号。这要求设计一套高效的数据处理流程、构建适合的机器学习模型,并实现自动化的预测和验证系统。
30 1
【人工智能】项目实践与案例分析:利用机器学习探测外太空中的系外行星
|
13天前
|
机器学习/深度学习 人工智能 算法
探索人工智能的未来:机器学习的奥秘
本文旨在揭示机器学习技术的核心原理和未来趋势。我们将从基础概念出发,通过易懂的语言和生活化的比喻,逐步深入到机器学习的应用实例,并探讨其对日常生活的影响。文章不仅为初学者提供入门知识,还为有志于深入了解人工智能领域的读者指明方向。
|
23天前
|
机器学习/深度学习 人工智能 自动驾驶
探索人工智能的未来:机器学习如何塑造我们的世界
【8月更文挑战第23天】在这篇文章中,我们将深入探讨人工智能(AI)的发展趋势以及它如何影响我们的生活方式。从自动驾驶汽车到智能医疗,AI正在以前所未有的速度改变世界。我们将通过具体案例和专家分析,揭示AI技术的潜在影响,并思考如何在享受其便利的同时,应对可能带来的挑战。
32 3
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
【机器学习】python之人工智能应用篇--代码生成技术
代码生成技术是人工智能与软件工程交叉领域的一项重要技术,它利用机器学习、自然语言处理和其他AI算法自动编写或辅助编写计算机程序代码。这一技术旨在提高编程效率、降低错误率,并帮助非专业开发者快速实现功能。以下是代码生成技术的概述及其典型应用场景。
31 6
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
探索Python中的人工智能与机器学习库
【8月更文挑战第20天】
39 1
|
25天前
|
机器学习/深度学习 人工智能 监控
|
25天前
|
机器学习/深度学习 人工智能 自动驾驶
探索人工智能的未来:机器学习如何重塑我们的世界
【8月更文挑战第20天】在本文中,我们将深入探讨机器学习技术如何逐步改变我们的生活和工作方式。通过分析当前的技术应用趋势和未来预测,揭示机器学习在医疗、教育、交通等多个领域内的潜在影响。文章将不展示具体的代码示例,而是侧重于机器学习技术的实际应用及其对人类活动的深远影响。
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
【机器学习】python之人工智能应用篇——3D生成技术
在Python中,人工智能(AI)与3D生成技术的结合可以体现在多个方面,比如使用AI算法来优化3D模型的生成、通过机器学习来预测3D模型的属性,或者利用深度学习来生成全新的3D内容。然而,直接通过AI生成完整的3D模型(如从文本描述中生成)仍然是一个活跃的研究领域。 3D生成技术是一种通过计算机程序从二维图像或文本描述自动创建三维模型的过程。这一技术在近年来得到了飞速的发展,不仅为游戏、动画和影视行业带来了革命性的变革,还在虚拟现实、增强现实以及工业设计等多个领域展现出了巨大的应用潜力
30 2

相关产品

  • 人工智能平台 PAI