R语言多元(多变量)GARCH :GO-GARCH、BEKK、DCC-GARCH和CCC-GARCH模型和可视化

简介: R语言多元(多变量)GARCH :GO-GARCH、BEKK、DCC-GARCH和CCC-GARCH模型和可视化

全文链接:http://tecdat.cn/?p=30647


从Engle在1982发表自回归条件异方差(ARCH)模型的论文以来,金融时间序列数据的波动性就倍受关注。同时,近几年又出现了研究股票市场的波动传递性点击文末“阅读原文”获取完整代码数据


多市场的多维广义自回归条件异方差模型及其在不同条件下的扩展与变形,它们不仅包含了单变量的波动特性,而且很好的描述了不同变量间的相互关系。所以,多维GARCH模型为分析金融市场的相互影响提供了有力的工具。

我们围绕多变量GARCH技术进行一些咨询,帮助客户解决独特的业务问题。本文涉及多变量GARCH模型的构建。为此,请考虑以下模型

  • BEKK
  • CCC-GARCH 和 DCC-GARCH
  • GO-GARCH


BEKK


BEKK(1,1)具有以下形式:

下图显示了具有上述参数的模拟序列:

BEKK 模型的调整通常计算成本很高,因为它们需要估计大量参数。在本节中,我们将使用该包来估计上一节中模拟多变量序列的参数。

对于 BEKK 模型(1,1) 的调整,我们使用以下语法

fit.bek.m<-BE(matsim)

估计数由以下公式给出:


CCC-GARCH和DCC-GARCH


c.H1<-eccc.sim(nobs=1000, c.a1, c.A1, c.B1, c.R1, d.f=5, model="diagonal")
#'h'模拟条件方差的矩阵(T × N )
#'eps'是模拟的时间序列与(E)CCC-GARCH过程的矩阵(T × N )
plot.ts(c.H1$eps, main = "Processos simulados")

对于模拟过程,我们将使用相同的包估计参数,函数 .我们有两个模拟序列,然后我们假设它们遵循 CCC-GARCH(1,1) 以下过程

估算结果为:

DCC-GARCH

DCC-GARCH 模型是 CCC-GARCH 情况的推广,也就是说,我们有 R matris 不一定是固定的,也就是说它随时间变化:

模拟示例

为了模拟 DCC-GARCH 过程,我们考虑比较性能。

obs=1000, d.a1, d.A1, d.B1, d.R1, dcc.para=c(d.alpha1,d.beta1), d.f=5, model="diagonal")

点击标题查阅往期内容


MATLAB用GARCH-EVT-Copula极值理论模型VaR预测分析股票投资组合


01

02

03

04

ccgarch


与CCC-GARCH的情况一样,我们将使用以下初始量进行迭代过程

estimation(inia=d.w0,iniA=d.A0,iniB=d.B0,ini.dcc=d.w0,model="diagonal",dvar=d.H1$eps)

结果如下:

rmgarch


拟合模型的结果如下:

DCC-GARCH模型


最初,仅实现 DCC 模型(1,1)。

模拟模型平差的结果如下所示:

CCC-GARCH和DCC-GARCH模型的结论

我们在 CCC-GARCH 和 DCC-GARCH 示例中都看到,该软件包没有对模拟模型的参数提供令人满意的估计值。


GO-GARCH


在GO-GARCH模型中,我们对构建协方差矩阵的正交分解感兴趣

模拟

给出的矩阵M由下式给出:

我们将得到:

gog.rt<-t(M%*%t(bt))

gogarch


rmgarch


让我们首先指定流程参数:rmgarch

mean.model=list(model="constant"),distribution.model="mvnorm

根据估计因子构建数据矩阵的不同序列之间的估计关系表面

相关文章
|
1月前
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
|
1月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
1月前
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
1月前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
|
1月前
|
Web App开发 数据可视化 数据挖掘
利用R语言进行聚类分析实战(数据+代码+可视化+详细分析)
利用R语言进行聚类分析实战(数据+代码+可视化+详细分析)
|
1月前
【R语言实战】——Logistic回归模型
【R语言实战】——Logistic回归模型
|
1月前
|
机器学习/深度学习 数据可视化
R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码
R语言Stan贝叶斯回归置信区间后验分布可视化模型检验|附数据代码
|
1月前
|
移动开发 数据可视化
广义线性模型beta二项分布的淋巴结疾病风险预测可视化R语言2实例合集|附数据代码
广义线性模型beta二项分布的淋巴结疾病风险预测可视化R语言2实例合集|附数据代码
|
8月前
使用OKCC呼叫中心系统的客户体验分析
案例1.某教培公司 招生旺季到来,很多教育机构都是以电话形式进行招生,回访学生家长,作为电销人员,每天的工作量特别特别大,号码需要一个一个手动输入再拨打,而且绝大部分都还是无效的,如空号、黑名单、没接通、没意向等等。 用我们OKCC人工坐席外呼系统就可以为电销人员一键呼叫,只需批量导入客户资料,无需手动输入号码,还可根据自身业务需求,灵活选取合适的呼叫方式。支持智能二次检测号码质量,过滤空号、错号、接通意向低等无效号码,提升外呼效率及员工积极性。
|
7月前
|
人工智能 中间件 Java
呼叫中心系统如果对接阿里灵积大模型
自chatgpt3.5发布以来,各种大模型飞速发展,各行各业都有接入大模型的需求,呼叫中心行业非常适合通过接入大模型用AI来回答用户的各种咨询,降低人力资源,使用顶顶通呼叫中心中间件,只需要100行不到的代码,就可以非常简单容易的让电话机器人系统,呼叫中心系统快速接入各种大模型
279 2

热门文章

最新文章