数据分享|PYTHON可视化探索新冠疫情病毒与失业率是否存在线性关系

简介: 数据分享|PYTHON可视化探索新冠疫情病毒与失业率是否存在线性关系

全文链接:http://tecdat.cn/?p=28560

作者:Chang Gao


2020年疫情愈演愈烈,新冠的检测与确诊人数也急剧上飙,失控的疫情无疑给经济造成了巨大的打击,同时也极大的影响了就业市场。对于政府来说,分析确定线性关系是对未来走向进行评估预测的重要基石,但是使用python进行提取数据进行整合并且使用可视化清晰的呈现线性关系并不是一件容易的事情

解决方案


任务/目标

基于政府提供的线上数据,运用数据源分析探究新冠病毒检测人数与失业率查看文末了解数据免费获取方式是否存在线性关系。

数据源准备

第一个数据源来自失业率统计。

第二个数据源来自新冠检测及病例数统计数据。

数据源导入

使用API将数据导入Python提取可用部分,并将数据源用data frame的形式呈现,同时使用.describe()对其进行了简单的整理描述。自此对数据的类型及基本情况(两个数据集的平均数,中位数,方差,最大最小值)有了一个基本的了解。

ERD图解

数据初步可视化

点击标题查阅往期内容


Python用RNN神经网络:LSTM、GRU、回归和ARIMA对COVID19新冠疫情人数时间序列预测


01

02

03

04


数据清洗


检查新冠病毒数据集的异常值并对其进行清洗,将清洗后的数据集重新计算平均值并将两个数据集进行合并。

项目结果


在此案例中,我利用折线图将失业率进行可视化处理,同时利用散点图对新冠病毒案例及检测数进行可视化处理并将检测结果为阳性的案例进行进一步提取(同时借助tableau对新冠病毒进行更加清晰的可视化处理),其可视化图形如下:


可以看出,新冠病毒的病例及检测数与失业率并没有明显的线性关系,但在疫情爆发的初期,新冠病毒的爆发的确对经济及就业市场造成了巨大的影响。

由于并不存在明显可靠的线性关系,我们无法对未来失业率或是新冠病毒的案例及检测数进行准确的预估。我们需要更多的相关数据进行分析评估及预测。


关于作者


在此对Chang Gao对本文所作的贡献表示诚挚感谢,她专长商业数据分析、数据可视化、数据采集。

相关文章
|
1月前
|
JSON 算法 API
1688商品详情API实战:Python调用全流程与数据解析技巧
本文介绍了1688电商平台的商品详情API接口,助力电商从业者高效获取商品信息。接口可返回商品基础属性、价格体系、库存状态、图片描述及商家详情等多维度数据,支持全球化语言设置。通过Python示例代码展示了如何调用该接口,帮助用户快速上手,适用于选品分析、市场研究等场景。
|
2月前
|
数据采集 NoSQL 关系型数据库
Python爬虫去重策略:增量爬取与历史数据比对
Python爬虫去重策略:增量爬取与历史数据比对
|
1月前
|
Web App开发 数据采集 JavaScript
动态网页爬取:Python如何获取JS加载的数据?
动态网页爬取:Python如何获取JS加载的数据?
344 58
|
26天前
|
人工智能 数据可视化 Python
在Python中对数据点进行标签化
本文介绍了如何在Python中使用Matplotlib和Seaborn对数据点进行标签化,提升数据可视化的信息量与可读性。通过散点图示例,展示了添加数据点标签的具体方法。标签化在标识数据点、分类数据可视化及趋势分析中具有重要作用。文章强调了根据需求选择合适工具,并保持图表清晰美观的重要性。
51 15
|
18天前
|
数据采集 Web App开发 JavaScript
Python爬虫解析动态网页:从渲染到数据提取
Python爬虫解析动态网页:从渲染到数据提取
|
1月前
|
供应链 API 开发者
1688 商品数据接口终极指南:Python 开发者如何高效获取标题 / 价格 / 销量数据(附调试工具推荐)
1688商品列表API是阿里巴巴开放平台提供的服务,允许开发者通过API获取1688平台的商品信息(标题、价格、销量等)。适用于电商选品、比价工具、供应链管理等场景。使用时需构造请求URL,携带参数(如q、start_price、end_price等),发送HTTP请求并解析返回的JSON/XML数据。示例代码展示了如何用Python调用该API获取商品列表。
113 18
|
2月前
|
数据采集 存储 缓存
Python爬虫与代理IP:高效抓取数据的实战指南
在数据驱动的时代,网络爬虫是获取信息的重要工具。本文详解如何用Python结合代理IP抓取数据:从基础概念(爬虫原理与代理作用)到环境搭建(核心库与代理选择),再到实战步骤(单线程、多线程及Scrapy框架应用)。同时探讨反爬策略、数据处理与存储,并强调伦理与法律边界。最后分享性能优化技巧,助您高效抓取公开数据,实现技术与伦理的平衡。
124 4
|
7月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
225 0
|
7月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
155 2
|
7月前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
157 2

推荐镜像

更多