【AI Agent系列】【LangGraph】3. 一行代码让你的 LangGraph 结构可视化!

简介: 【AI Agent系列】【LangGraph】3. 一行代码让你的 LangGraph 结构可视化!
  • 大家好,我是 同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:


可视化是个非常非常非常有用和友好的东西。本文我们来实现 LangGraph 结构的可视化,当你创建的 LangGraph 结构越来越复杂时,可以利用它来方便地调查和优化逻辑。

一行代码即可搞定,非常简单。

0. 示例Demo

0.1 完整代码

先上完整代码,跑通再说

from langchain_openai import ChatOpenAI
from langchain_community.tools.tavily_search import TavilySearchResults
from langgraph.prebuilt import chat_agent_executor
from langchain_core.messages import HumanMessage
tools = [TavilySearchResults(max_results=1)]
model = ChatOpenAI()
app = chat_agent_executor.create_function_calling_executor(model, tools)
app.get_graph().print_ascii()

0.2 踩坑:No module named ‘grandalf’

运行时遇到问题:

安装 grandalf 即可:

pip install -U grandalf -i https://pypi.tuna.tsinghua.edu.cn/simple

0.3 运行结果

可以看到它可视化的图与上篇文章我自己画的图一样:

1. 代码详解

代码很简单,就两行有效代码:

(1)app = chat_agent_executor.create_function_calling_executor(model, tools),创建一个 Graph。

(2)app.get_graph().print_ascii(),以 ASCII 的形式打印出图形。

1.1 create_function_calling_executor

这个其实就是将我们上篇文章实现的 LangGraph 创建的过程做了一下封装而已,源码如下:

1.2 print_ascii

从运行结果来看,它最终实现的效果其实就是将节点和边打印出来,多了一些空格和星号。实现原理并不难,但是想要组织好这个这个显示的效果(空格和星号的数量等),感觉很难。部分源码如下,看看就好,会用就行:

def draw_ascii(self) -> str:
    return draw_ascii(
        {node.id: node_data_str(node) for node in self.nodes.values()},
        [(edge.source, edge.target) for edge in self.edges],
    )
def print_ascii(self) -> None:
    print(self.draw_ascii())  # noqa: T201
def draw_ascii(vertices: Mapping[str, str], edges: Sequence[Tuple[str, str]]) -> str:
    """Build a DAG and draw it in ASCII.
    Args:
        vertices (list): list of graph vertices.
        edges (list): list of graph edges.
    Returns:
        str: ASCII representation
    Example:
        >>> from dvc.dagascii import draw
        >>> vertices = [1, 2, 3, 4]
        >>> edges = [(1, 2), (2, 3), (2, 4), (1, 4)]
        >>> print(draw(vertices, edges))
        +---+     +---+
        | 3 |     | 4 |
        +---+    *+---+
          *    **   *
          *  **     *
          * *       *
        +---+       *
        | 2 |      *
        +---+     *
             *    *
              *  *
               **
             +---+
             | 1 |
             +---+
    """

2. 更好看一点的可视化

教程中还写了另一种可视化的方式,结果如下:

代码如下:

# app.get_graph().print_ascii() ## 替换掉这一句
from IPython.display import Image
Image(app.get_graph().draw_png())

运行前需要先安装如下依赖库

pip install -U prompt_toolkit  -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install -U grandalf -i https://pypi.tuna.tsinghua.edu.cn/simple

安装过程中你可能会遇到如下问题:ERROR: Could not build wheels for pygraphviz, which is required to install pyproject.toml-based projects

Windows平台的解决方法可参考这篇文章:https://savleen307.medium.com/pygraphviz-installation-in-windows-f45cc6fed981

3. 总结

本文介绍了两种将 LangGraph 可视化的方法,一行代码就可以搞定:

app.get_graph().print_ascii()

Image(app.get_graph().draw_png())

其中 app 是你构建的 LangGraph:

workflow = StateGraph(AgentState)
......
app = workflow.compile()

4. 参考

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是 同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

相关文章
|
7天前
|
人工智能 移动开发 JavaScript
如何用uniapp打包桌面客户端exe包,vue或者uni项目如何打包桌面客户端之electron开发-优雅草央千澈以开源蜻蜓AI工具为例子演示完整教程-开源代码附上
如何用uniapp打包桌面客户端exe包,vue或者uni项目如何打包桌面客户端之electron开发-优雅草央千澈以开源蜻蜓AI工具为例子演示完整教程-开源代码附上
|
4天前
|
人工智能 开发框架 安全
Smolagents:三行代码就能开发 AI 智能体,Hugging Face 开源轻量级 Agent 构建库
Smolagents 是 Hugging Face 推出的轻量级开源库,旨在简化智能代理的构建过程,支持多种大语言模型集成和代码执行代理功能。
158 68
Smolagents:三行代码就能开发 AI 智能体,Hugging Face 开源轻量级 Agent 构建库
|
2天前
|
人工智能 安全 API
OpenHands:能自主检索外部知识的 AI 编程工具,自动执行命令、网页浏览和生成代码等操作
OpenHands 是一款基于 AI 的编程工具,支持多智能体协作,能够自动生成代码、执行命令、浏览网页等,显著提升开发效率。
67 26
OpenHands:能自主检索外部知识的 AI 编程工具,自动执行命令、网页浏览和生成代码等操作
|
9天前
|
人工智能 前端开发 Unix
使用tree命令把自己的代码归类文件目录的方法-优雅草央千澈以优雅草AI智能功能为例给大家展示tree命令实际用法
使用tree命令把自己的代码归类文件目录的方法-优雅草央千澈以优雅草AI智能功能为例给大家展示tree命令实际用法
使用tree命令把自己的代码归类文件目录的方法-优雅草央千澈以优雅草AI智能功能为例给大家展示tree命令实际用法
|
1天前
|
存储 人工智能 自然语言处理
AI Agent与SaaS工具协同发展的未来:企业智能化的全新范式
AI Agent以自主性和智能化为核心,适合复杂任务的动态执行;而SaaS工具则注重服务的完整性和易用性,适合标准化业务需求。
27 14
AI Agent与SaaS工具协同发展的未来:企业智能化的全新范式
|
7天前
|
机器学习/深度学习 人工智能 算法
FinRobot:开源的金融专业 AI Agent,提供市场预测、报告分析和交易策略等金融解决方案
FinRobot 是一个开源的 AI Agent 平台,专注于金融领域的应用,通过大型语言模型(LLMs)构建复杂的金融分析和决策工具,提供市场预测、文档分析和交易策略等多种功能。
75 13
FinRobot:开源的金融专业 AI Agent,提供市场预测、报告分析和交易策略等金融解决方案
|
6天前
|
存储 人工智能 开发框架
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
Eliza 是一个开源的多代理模拟框架,支持多平台连接、多模型集成,能够快速构建智能、高效的AI系统。
72 8
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
|
9天前
|
人工智能 开发框架 算法
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
Qwen-Agent 是阿里通义开源的一个基于 Qwen 模型的 Agent 应用开发框架,支持指令遵循、工具使用、规划和记忆能力,适用于构建复杂的智能代理应用。
155 10
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
|
9天前
|
人工智能 自然语言处理 前端开发
三大行业案例:AI大模型+Agent实践全景
本文将从AI Agent和大模型的发展背景切入,结合51Talk、哈啰出行以及B站三个各具特色的行业案例,带你一窥事件驱动架构、RAG技术、人机协作流程,以及一整套行之有效的实操方法。具体包含内容有:51Talk如何让智能客服“主动进攻”,带来约课率、出席率双提升;哈啰出行如何由Copilot模式升级为Agent模式,并应用到客服、营销策略生成等多个业务场景;B站又是如何借力大模型与RAG方法,引爆了平台的高效内容检索和强互动用户体验。
108 5
|
11天前
|
机器学习/深度学习 人工智能 自动驾驶
企业内训|AI大模型在汽车行业的前沿应用研修-某汽车集团
本课程是TsingtaoAI为某汽车集团高级项目经理设计研发,课程全面系统地解析AI的发展历程、技术基础及其在汽车行业的深度应用。通过深入浅出的理论讲解、丰富的行业案例分析以及实战项目训练,学员将全面掌握机器学习、深度学习、NLP与CV等核心技术,了解自动驾驶、智能制造、车联网与智能营销等关键应用场景,洞悉AI技术对企业战略布局的深远影响。
147 97

热门文章

最新文章