Agent-E:基于 AutoGen 代理框架构建的 AI 浏览器自动化系统

本文涉及的产品
图像搜索,7款服务类型 1个月
简介: Agent-E 是一个基于 AutoGen 代理框架构建的智能自动化系统,专注于浏览器内的自动化操作。它能够执行多种复杂任务,如填写表单、搜索和排序电商产品、定位网页内容等,从而提高在线效率,减少重复劳动。本文将详细介绍 Agent-E 的功能、技术原理以及如何运行该系统。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 功能:Agent-E 能够执行多种浏览器内的自动化任务,如表单填写、电商搜索与排序、内容定位等。
  2. 技术原理:基于 AutoGen 代理框架,使用代理执行任务,并通过技能库和自然语言交互实现自动化。
  3. 运行方法:提供了详细的安装和配置指南,以及如何通过命令行运行 Agent-E。

正文(附运行示例)

Agent-E 是什么

公众号: 蚝油菜花 - Agent-E

Agent-E 是基于 AutoGen 代理框架构建的智能自动化系统,专注于浏览器内的自动化操作。它通过自然语言交互,能够执行多种复杂任务,如填写表单、搜索和排序电商产品、定位网页内容等。Agent-E 的目标是提高在线效率,减少重复劳动,让用户更专注于重要事务。

Agent-E 的核心在于其基于代理的架构,通过代理(如用户代理和浏览器导航代理)执行任务。系统围绕技能库构建,技能库包含一系列预定义的动作(技能),分为感知技能和行动技能。自然语言交互使得用户可以用自然语言与浏览器互动,让任务执行更加直观。

Agent-E 的主要功能

  • 表单填写:自动填写网络表单,包括个人信息输入。
  • 电商搜索与排序:在电商网站如亚马逊上根据销量或价格等标准搜索和排序产品。
  • 内容定位:在网站上查找特定内容,如体育比分或大学联系信息。
  • 媒体交互:与基于网络的媒体互动,包括播放 YouTube 视频和管理播放设置。
  • 网络搜索:执行全面的网络搜索,收集各种主题的信息。
  • 项目管理自动化:在项目管理平台如 JIRA 上过滤问题和自动化工作流程。

Agent-E 的技术原理

  • 基于代理的架构:基于 AutoGen 代理框架,用代理(如用户代理和浏览器导航代理)执行任务。
  • 技能库:核心功能围绕技能库构建,技能库包含一系列预定义的动作(技能),分为感知技能和行动技能。
  • 自然语言交互:支持用户用自然语言与浏览器互动,让任务执行更加直观。
  • DOM 蒸馏:基于 DOM 蒸馏技术,Agent-E 将 HTML DOM 简化为相关的 JSON 快照,专注于用户任务相关的元素。
  • 变化观察:执行动作后,Agent-E 监测状态变化,用语言反馈形式提供给 LLM,指导更准确的性能。
  • 层次化规划:采用层次化规划,将复杂任务分解为子任务,由不同级别的代理处理。

如何运行 Agent-E

快速开始

  1. 运行安装脚本
  • macOS/Linux
    ./install.sh
    
    如果需要安装 Playwright,可以使用 -p 标志:
    ./install.sh -p
    
  • Windows
    .\win_install.ps1
    
    如果需要安装 Playwright,可以使用 -p 标志:
    .\win_install.ps1 -p
    
  1. 配置环境变量
  • 编辑 .envagents_llm_config.json 文件,按照说明设置字段。
  1. 运行 Agent-E
    python -m ae.main
    
    macOS 用户
    python -u -m ae.main
    

手动设置

  1. 安装 uv
  • macOS/Linux
    curl -LsSf https://astral.sh/uv/install.sh | sh
    
  • Windows
    powershell -c "irm https://astral.sh/uv/install.ps1 | iex"
    
  1. 设置虚拟环境

    uv venv --python 3.11  # 3.10+ 也可以
    source .venv/bin/activate  # Windows: .venv\Scripts\activate
    
  2. 安装依赖

    uv pip compile pyproject.toml -o requirements.txt
    uv pip install -r requirements.txt
    
  3. 配置环境

    cp .env-example .env
    
  • 编辑 .env 文件,设置以下变量:
    • AUTOGEN_MODEL_NAME
    • AUTOGEN_MODEL_API_KEY
    • AUTOGEN_MODEL_BASE_URL(可选)
    • AUTOGEN_MODEL_API_TYPE(可选)
    • AUTOGEN_MODEL_API_VERSION(可选)
    • AUTOGEN_LLM_TEMPERATURE(可选)
    • AUTOGEN_LLM_TOP_P(可选)
    • BROWSER_STORAGE_DIR(可选)

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
Agent Laboratory:AI自动撰写论文,AMD开源自动完成科研全流程的多智能体框架
Agent Laboratory 是由 AMD 和约翰·霍普金斯大学联合推出的自主科研框架,基于大型语言模型,能够加速科学发现、降低成本并提高研究质量。
107 23
Agent Laboratory:AI自动撰写论文,AMD开源自动完成科研全流程的多智能体框架
|
6天前
|
人工智能 开发框架 自然语言处理
Eko:一句话就能快速构建复杂工作流的 AI 代理开发框架!快速实现自动操作电脑和浏览器完成任务
Eko 是 Fellou AI 推出的开源 AI 代理开发框架,支持自然语言驱动,帮助开发者快速构建从简单指令到复杂工作流的智能代理。
108 12
Eko:一句话就能快速构建复杂工作流的 AI 代理开发框架!快速实现自动操作电脑和浏览器完成任务
|
12天前
|
人工智能
RealisHuman:AI 生成的人像不真实?后处理框架帮你修复生成图像中畸形人体部位
RealisHuman 是一个创新的后处理框架,专注于修复生成图像中畸形的人体部位,如手和脸,通过两阶段方法提升图像的真实性。
53 11
RealisHuman:AI 生成的人像不真实?后处理框架帮你修复生成图像中畸形人体部位
|
13天前
|
人工智能 运维 Prometheus
AIOpsLab:云服务自动化运维 AI,微软开源云服务 AI 框架,覆盖整个生命周期
AIOpsLab 是微软等机构推出的开源框架,支持云服务自动化运维,涵盖故障检测、根本原因分析等完整生命周期。
90 13
AIOpsLab:云服务自动化运维 AI,微软开源云服务 AI 框架,覆盖整个生命周期
|
18天前
|
人工智能
LangGraph:构建多代理动态工作流的开源框架,支持人工干预、循环、持久性等复杂工作流自动化
LangGraph 是一个基于图结构的开源框架,专为构建状态化、多代理系统设计,支持循环、持久性和人工干预,适用于复杂的工作流自动化。
57 12
LangGraph:构建多代理动态工作流的开源框架,支持人工干预、循环、持久性等复杂工作流自动化
|
18天前
|
存储 人工智能 开发框架
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
Eliza 是一个开源的多代理模拟框架,支持多平台连接、多模型集成,能够快速构建智能、高效的AI系统。
134 8
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
|
21天前
|
人工智能 开发框架 算法
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
Qwen-Agent 是阿里通义开源的一个基于 Qwen 模型的 Agent 应用开发框架,支持指令遵循、工具使用、规划和记忆能力,适用于构建复杂的智能代理应用。
315 10
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
|
18天前
|
数据采集 人工智能 分布式计算
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
64 5
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
|
6天前
|
人工智能 分布式计算 大数据
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
42 7
|
15天前
|
人工智能 测试技术 决策智能
玩转智能体魔方!清华推出AgentSquare模块化搜索框架,开启AI智能体高速进化时代
清华大学研究团队提出模块化LLM智能体搜索(MoLAS)框架AgentSquare,将LLM智能体设计抽象为规划、推理、工具使用和记忆四大模块,实现模块间的轻松组合与替换。通过模块进化和重组机制,AgentSquare显著提升了智能体的适应性和灵活性,并在多个基准测试中表现出色,平均性能提高17.2%。此外,该框架还具备可解释性,有助于深入理解智能体架构对任务性能的影响。论文地址:https://arxiv.org/abs/2410.06153
60 10

热门文章

最新文章