PYTHON用决策树分类预测糖尿病和可视化实例

简介: PYTHON用决策树分类预测糖尿病和可视化实例

决策树是对例子进行分类的一种简单表示。它是一种有监督的机器学习技术,数据根据某个参数被连续分割。决策树分析可以帮助解决分类和回归问题。

决策树算法将数据集分解成更小的子集;同时,相关的决策树也在逐步发展。决策树由节点(测试某个属性的值)、边/分支(对应于测试的结果并连接到下一个节点或叶子)和叶子节点(预测结果的终端节点)组成,使其成为一个完整的结构。

在这篇文章中,我们将学习Python中决策树的实现,使用scikit learn包。

对于我们的分析,我们选择了一个非常相关和独特的数据集,该数据集适用于医学科学领域,它将有助于预测病人是否患有糖尿病,基于数据集中采集的变量。这些信息来自国家糖尿病、消化道和肾脏疾病研究所,包括预测变量,如病人的BMI、怀孕情况、胰岛素水平、年龄等。让我们直接用决策树算法来解决这个问题,进行分类。

用Python实现决策树

对于任何数据分析问题,我们首先要清理数据集,删除数据中的所有空值和缺失值。在这种情况下,我们不是在处理错误的数据,这使我们省去了这一步。

1. 为我们的决策树分析导入所需的库并拉入所需的数据

# 加载库
from sklearn.model\_selection import train\_test\_split #导入 train\_test_split 函数
from sklearn import metrics #导入scikit-learn模块以计算准确率


# 载入数据集
data = pd.read\_csv("diabetes.csv", header=None, names=col\_names)

让我们看看这个数据集的前几行是什么样子的

pima.head()

2. 在加载数据后,我们了解结构和变量,确定目标变量和特征变量(分别为因变量和自变量)。

#在特征和目标变量中拆分数据集
X = pima\[feature\] # 特征
y = pima.label # 目标变量

3. 我们把数据按70:30的比例分成训练集和测试集。

# 将数据集分成训练集和测试集
train\_test\_split(X, y, test\_size=0.3, random\_state=1) # 70%的训练和30%的测试

标准做法,你可以根据需要调整70:30至80:20。


点击标题查阅往期内容


R语言用逻辑回归、决策树和随机森林对信贷数据集进行分类预测


左右滑动查看更多


01

02

03

04




4. 使用scikit learn进行决策树分析

# 创建决策树分类器对象
clf = DecisionTreeClassifier()

5. 估计分类器预测结果的准确程度。准确度是通过比较实际测试集值和预测值来计算的。

# 模型准确率,分类器正确的概率是多少?

print("准确率:",metrics.accuracy\_score(y\_test, y_pred))

我们的决策树算法有67.53%的准确性。这么高的数值通常被认为是好的模型。

6. 现在我们已经创建了一棵决策树,看看它在可视化的时候是什么样子的

决策树的可视化。

Image(graph.create_png())

Python输出

你会注意到,在这个决策树图中,每个内部节点都有一个分割数据的决策规则。

衡量通过决策树分析创建的节点的不纯度

Gini指的是Gini比,衡量决策树中节点的不纯度。人们可以认为,当一个节点的所有记录都属于同一类别时,该节点是纯的。这样的节点被称为叶子节点。

在我们上面的结果中,由于结果的复杂性,完整的决策树很难解释。修剪一棵树对于结果的理解和优化它是至关重要的。这种优化可以通过以下三种方式之一进行。

  • 标准:默认="gini"
  • splitter:字符串,可选(默认="best")或分割策略。选择分割策略。可以选择 "best"来选择最佳分割,或者选择 "random"来选择最佳随机分割。
  • max_depth: int或None,可选(默认=None)或树的最大深度
    这个参数决定了树的最大深度。这个变量的数值越高,就会导致过度拟合,数值越低,就会导致拟合不足。

在我们的案例中,我们将改变树的最大深度作为预修剪的控制变量。让我们试试max_depth=3。

# 创建决策树分类器对象
DecisionTree( max_depth=3)

在Pre-pruning上,决策树算法的准确率提高到77.05%,明显优于之前的模型。

决策树在Python中的实现

Image(graph.create_png())

结果:

Python输出

这个修剪过的模型的结果看起来很容易解释。有了这个,我们就能够对数据进行分类,并预测一个人是否患有糖尿病。但是,决策树并不是你可以用来提取这些信息的唯一技术,你还可以探索其他各种方法。

如果你想学习和实现这些算法,那么你应该探索通过辅助方法学习,并得到专业人士的1对1指导。拓端数据科学职业轨道计划保证了1:1的指导,项目驱动的方法,职业辅导,提供实习工作项目保证,来帮助你将职业生涯转变为数据驱动和决策的角色。请联系我们以了解更多信息!


相关文章
|
23小时前
|
存储 API Python
Python文件操作:深入解析与实例
Python文件操作:深入解析与实例
|
1天前
|
数据采集 JSON 数据库
800个程序实例、5万行代码!清华大学出版【Python王者归来】
Python 的丰富模块(module)以及广泛的应用范围,使 Python 成为当下最重要的计算机语言之一,本书尝试将所有常用模块与应用分门别类组织起来,相信只要读者遵循本书实例,定可以轻松学会 Python 语法与应用,逐步向 Python 高手之路迈进,这也是撰写本书的目的。 本书以约 800 个程序实例讲解了:完整的 Python 语法,Python 的输入与输出,Python 的数据型态,列表(list)、元组(tuple)、字典(dict)、集合(set),函数设计,类别设计,使用系统与外部模块(module),设计自己的模块(module),文件压缩与解压缩,程序除错与异常处理…
|
5天前
|
存储 数据可视化 算法
最新Python-Matplotlib可视化(9)——精通更多实用图形的绘制,2024年最新小米面试题库
最新Python-Matplotlib可视化(9)——精通更多实用图形的绘制,2024年最新小米面试题库
最新Python-Matplotlib可视化(9)——精通更多实用图形的绘制,2024年最新小米面试题库
|
5天前
|
算法 程序员 Python
年底工资总结,实例教你用Python计算个税 依法纳税做好公民(1)
年底工资总结,实例教你用Python计算个税 依法纳税做好公民(1)
|
5天前
|
数据可视化 数据挖掘 Python
【Python DataFrame专栏】DataFrame的可视化探索:使用matplotlib和seaborn
【5月更文挑战第20天】本文介绍了使用Python的pandas、matplotlib和seaborn库进行数据可视化的步骤,包括创建示例数据集、绘制折线图、柱状图、散点图、热力图、箱线图、小提琴图和饼图。这些图表有助于直观理解数据分布、关系和趋势,适用于数据分析中的探索性研究。
【Python DataFrame专栏】DataFrame的可视化探索:使用matplotlib和seaborn
|
10天前
|
存储 Java 数据安全/隐私保护
Python----类对象和实例对象
Python----类对象和实例对象
11 2
|
4天前
|
存储 算法 安全
Python编程实验六:面向对象应用
Python编程实验六:面向对象应用
20 1
|
4天前
|
Python
Python编程作业五:面向对象编程
Python编程作业五:面向对象编程
20 1
|
23小时前
|
机器学习/深度学习 数据处理 算法框架/工具
Python标准库与第三方库:强大的编程资源
Python标准库与第三方库:强大的编程资源
|
1天前
|
Python 容器
Python与GUI编程:创建图形用户界面
Python的Tkinter库是用于构建GUI应用的内置工具,无需额外安装。它提供了丰富的控件,如按钮、文本框等,让用户通过图形界面与程序交互。创建GUI窗口的基本步骤包括:导入Tkinter库,创建窗口对象,设置窗口属性,添加控件(如标签和按钮),并使用布局管理器(如`pack()`或`grid()`)来组织控件的位置。此外,可以通过绑定事件处理函数来响应用户操作,例如点击按钮。Tkinter还有更多高级功能,适合开发复杂GUI应用。