matlab测量计算信号的相似度

简介: matlab测量计算信号的相似度

本示例说明如何测量信号相似度。将回答以下问题:如何比较具有不同长度或不同采样率的信号?如何确定测量中是否存在信号或仅有噪声?有两个信号相关吗?如何测量两个信号之间的延迟?


比较具有不同采样率的信号

考虑一个音频信号数据库和一个模式匹配应用程序,您需要在其中识别正在播放的歌曲。数据通常以低采样率存储,以占用更少的内存。

figure
ax(1) = subplot(3,1,1);
plot((0:numel(T1)-1)/Fs1,T1,'k')
ylabel('Template 1')


第一个和第二个子图显示了来自数据库的模板信号。第三个子图显示了我们要在数据库中搜索的信号。仅查看时间序列,信号似乎与两个模板都不匹配。仔细检查发现,信号实际上具有不同的长度和采样率。

[Fs1 Fs2 Fs]
ans = 1×3

        4096        4096        8192

不同的长度使您无法计算两个信号之间的差异,但是可以通过提取信号的公共部分来轻松解决。此外,并不总是必须使长度相等。  


在测量中寻找信号

现在,我们可以使用xcorr函数将信号S与模板T1和T2互相关,以确定是否存在匹配项。

figure
ax(1) = subplot(2,1,1);
plot(lag1/Fs,C1,'k')
ylabel('Amplitude')
grid on


第一个子图表示信号与模板1的相关性较低,而第二个子图中的高峰值表示信号存在于第二个模板中。

互相关的峰值表示信号在61 ms之后开始存在于模板T2中。换句话说,信号T2使信号S超前499个采样,如SampleDiff所示。


测量信号之间的延迟并对齐它们

考虑一种情况,您正在从不同的传感器收集数据,记录桥两边的汽车引起的振动。分析信号时,可能需要对齐它们。假设您有3个传感器以相同的采样率工作,并且它们正在测量由同一事件引起的信号。

figure,
ax(1) = subplot(3,1,1);
plot(s1)


我们还可以查找两个信号之间的延迟。

t21表示s2落后s1 350个样本,t31表示s3领先s1 150个样本。该信息现在可用于通过时移信号来对齐3个信号。我们还可以alignsignals直接使用该功能来对齐信号,这可以通过延迟最早的信号来对齐两个信号。

s1 = alignsignals(s1,s3);
s2 = alignsignals(s2,s3);

figure
ax(1) = subplot(3,1,1);
plot(s1)
grid on
title('s1')



比较信号的频率

功率谱显示每个频率中存在的功率。频谱相干性识别信号之间的频域相关性。趋向于0的相干值表示相应的频率分量是不相关的,而趋向于1的值则表示相应的频率分量是相关的。

figure
t = (0:numel(sig1)-1)/Fs;
subplot(2,2,1)
plot(t,sig1,'k')
ylabel('s1')
grid on

计算两个信号之间的频谱相干性。确认sig1和sig2在35 Hz和165 Hz附近具有两个相关分量。在频谱相干性很高的频率中,可以使用互谱相位来估计相关分量之间的相对相位。

figure
subplot(2,1,1)
plot(f,Cxy)
title('Coherence Estimate')
grid on


35 Hz分量之间的相位滞后接近-90度,而165 Hz分量之间的相位滞后接近-60度。


查找信号中的周期

冬季办公大楼中的一组温度测量值。每30分钟进行一次测量,持续约16.5周。

figure
plot(days,temp)
title('Temperature Data')
xlabel('Time (days)')
ylabel('Temperature (Fahrenheit)')
grid on


在计算互相关之前去除信号的均值。它返回交叉协方差。将最大滞后限制为信号的50%,以获得对互协方差的良好估计。

figure
plot(lag/(2*24),xc,'k',...
     lag(df)/(2*24),xc(df),'kv','MarkerFaceColor','r')
grid on


观察自协方差的主要和次要波动。主峰和次峰出现等距。要验证它们是否正确,请计算并绘制后续峰位置之间的差异。

cycle1 = diff(df)/(2*24);

subplot(2,1,1)
plot(cycle1)
ylabel('Days')

mean(cycle1)
ans = 7
mean(cycle2)
ans = 1.0000

次要峰表示每周7个循环,主要峰表示每周1个循环。鉴于数据来自7天日历上的温度受控建筑物,因此这是有道理的。第一个7天的周期表示建筑物温度有一个每周的循环行为,其中周末温度降低,而工作日则恢复正常。1天的循环行为表示每天都有循环行为-夜间温度较低,白天则升高。

相关文章
|
17天前
|
算法
MATLAB符号计算
【10月更文挑战第9天】MATLAB不仅擅长数值计算,还具备强大的符号计算功能,支持代数运算、方程求解、微积分等。本文介绍如何使用MATLAB的符号工具箱进行符号变量定义、方程求解、微分积分及矩阵运算,并通过多个实际应用案例展示了其在机械系统、电路分析、经济优化和物理运动学等领域的应用。此外,文章还提供了符号计算的最佳实践和未来展望。
34 2
|
1月前
|
安全 调度
电力系统的负荷损失和潮流计算matlab仿真,对比最高度数,最高介数以及最高关键度等节点攻击
本课题研究节点攻击对电力系统稳定性的影响,通过模拟最高度数、最高介数和最高关键度攻击,对比不同攻击方式下的停电规模。采用MATLAB 2022a 进行系统仿真,核心程序实现线路断开、潮流计算及优化。研究表明,节点攻击会导致负荷损失和系统瘫痪,对电力系统的安全构成严重威胁。通过分析负荷损失率和潮流计算,提出减少负荷损失的方法,以提升电力系统的稳定性和安全性。
二阶锥松弛在配电网最优潮流计算中的应用matlab
二阶锥松弛在配电网最优潮流计算中的应用matlab
|
2月前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
2月前
|
机器学习/深度学习 算法
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
|
3月前
|
Python
【Python】实现MATLAB中计算两个矩形相交面积的rectint函数
Python中实现MATLAB中rectint函数的方法,该函数用于计算两个矩形相交区域的面积,并通过定义Rectangle类和calc_area函数展示了如何计算两个矩形的交集面积。
44 1
|
4月前
|
安全 C++
基于MATLAB的电力线路参数计算仿真
*1. 课题概述** - 电力线路分为输电与配电,计算关键参数至关重要 - 本项目开发基于MATLAB的软件,用于计算电力线路的重要参数 *2. 系统仿真结果** - 实现了工频电场、电力系统潮流等参数的计算。 - 包括MATLAB界面设计与计算功能实现。 *3. 系统原理简介** - **额定电压**: 设备最佳工作电压,保障性能稳定及延长使用寿命。 - **输变电设施**: 运行时产生工频电场和磁场,需符合国家标准限值。 - **线径计算**: 依据电流密度和趋肤效应确定导线截面积。 - **电力系统潮流计算**: 基于牛顿-拉夫逊法求解电力系统稳态运行状态,用于检查系统过负荷及电压质量。
|
4月前
|
监控
基于偏微分方程离散化计算的地下换热器建模与温度检测matlab仿真
**摘要:** 探索地下换热器的建模与温度检测,使用MATLAB2022a进行系统仿真,关注传热过程的热传导、对流和辐射。通过离散化偏微分方程建立数值模型,模拟温度场,考虑地质特性和水流影响。建模以网格单元描述温度变化,采用热电偶、红外和光纤测温技术验证模型并监控温度,各具优缺点。光纤测温法提供高精度和抗干扰的分布式监测。
|
5月前
|
存储 算法 计算机视觉
m基于FPGA的FIR低通滤波器实现和FPGA频谱分析,包含testbench和滤波器系数MATLAB计算程序
在Vivado 2019.2平台上开发的系统,展示了数字低通滤波器和频谱分析的FPGA实现。仿真结果显示滤波效果良好,与MATLAB仿真结果一致。设计基于FPGA的FIR滤波器,利用并行处理和流水线技术提高效率。频谱分析通过离散傅里叶变换实现。提供了Verilog核心程序以示例模块工作原理。
48 4
|
5月前
|
算法
m基于PSO粒子群优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB2022a仿真实现了基于遗传优化的NMS LDPC译码算法,优化归一化参数以提升纠错性能。NMS算法通过迭代处理低密度校验码,而PSO算法用于寻找最佳归一化因子。程序包含粒子群优化的迭代过程,根据误码率评估性能并更新解码参数。最终,展示了迭代次数与优化过程的关系,并绘制了SNR与误码率曲线。
49 2