二阶锥松弛在配电网最优潮流计算中的应用matlab

简介: 二阶锥松弛在配电网最优潮流计算中的应用matlab

一、主要内容

最优潮流计算是电网规划、优化运行的重要基础。首先建立了配电网全天有功损耗最小化的最优潮流计算模型;其次结合辐射型配电网潮流特点建立支路潮流约束,并考虑配电网中的可控单元,包括分布式电源和离散、连续无功补偿装置,建立其出力约束,该模型为非凸非线性模型;然后通过二阶锥松弛将该模型转化为包含整数变量的二阶锥规划模型。

二、部分代码

%% 1.设参
mpc = IEEE33BW;
pload = mpc.Pload;%节点有功负荷
qload = mpc.Qload;%节点无功负荷
branch = mpc.branch;
branch(:,3) = branch(:,3)*100/(12.66^2);%求阻抗标幺值
r = real(branch(:,3));
x = imag(branch(:,3));
T = 24;%时段数为24小时
nb = 33;%节点数
nl = 32;%支路数
pw=[45.56 55.67 60.09 67.99 70.08 65.88 69.75 65.88 55.08 50.34 56.32 60.44 57.90 60.88 45.40 40.71 21.44 27.59 29.08 45.88 50.09 47.80 59.07 56.42];
%光伏发电预测:
pv=[0 0 0 0 0 0 5.80 10.04 15.00 35.56 45.99 56.06 58.09 55.87 45.77 36.08 35.23 18.04 15.79 0 0 0 0 0 ];
upstream = zeros(nb,nl);
dnstream = zeros(nb,nl);
for i = 1:nl
    upstream(i,i) = 1;
end
for i=[1:16,18:20,22:23,25:31]
    dnstream(i,i+1) = 1;
end
dnstream(1,18) = 1;
dnstream(2,22) = 1;
dnstream(5,25) = 1;
dnstream(33,1) = 1;
Vmax = [1.05*1.05*ones(nb-1,T)
        1.05*1.05*ones(1,T)];
Vmin = [0.95*0.95*ones(nb-1,T)
        1.05*1.05*ones(1,T)];
Pgmax = [zeros(nb-1,T)
         ones(1,T)];
Qgmax = [zeros(nb-1,T)
         ones(1,T)];
%% 2.设变量
V = sdpvar(nb,T);%电压的平方
I = sdpvar(nl,T);%电流的平方
P = sdpvar(nl,T);%线路有功
Q = sdpvar(nl,T);%线路无功
Pg = sdpvar(nb,T);%发电机有功
Qg = sdpvar(nb,T);%发电机无功
gf8=sdpvar(1,T);%节点8光伏
fd12=sdpvar(1,T);%节点12风电
cb18=sdpvar(1,T);%节点18
svc31=sdpvar(1,T);%节点31

三、程序代码


相关文章
|
12天前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
|
2月前
|
算法 数据安全/隐私保护
基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真
该程序基于Big-Bang-Big-Crunch (BBBC)算法,在MATLAB2022A中实现目标函数最小值的计算与仿真。通过模拟宇宙大爆炸和大收缩过程,算法在解空间中搜索最优解。程序初始化随机解集,经过扩张和收缩阶段逐步逼近全局最优解,并记录每次迭代的最佳适应度。最终输出最佳解及其对应的目标函数最小值,并绘制收敛曲线展示优化过程。 核心代码实现了主循环、粒子位置更新、适应度评估及最优解更新等功能。程序运行后无水印,提供清晰的结果展示。
|
3月前
|
算法
MATLAB在风险管理中的应用:从VaR计算到压力测试
本文介绍如何使用MATLAB进行风险管理,涵盖风险度量(如VaR)、压力测试和风险分解。通过历史模拟法、参数法和蒙特卡洛模拟法计算VaR,评估投资组合在极端市场条件下的表现,并通过边际VaR和成分VaR识别风险来源。结合具体案例和代码实现,帮助读者掌握MATLAB在风险管理中的应用,确保投资组合的稳健性。
|
3月前
|
数据建模 数据处理
MATLAB学习之旅:数据建模与仿真应用
在MATLAB的学习中,我们已掌握基础操作、数据处理与统计分析。接下来将进入数据建模与仿真应用阶段,学习如何构建和验证现实世界的模型。我们将从定义模型结构和参数入手,涵盖线性回归、动态系统建模等内容,并通过仿真和实际数据对比评估模型的准确性和可靠性。最终,这些技能将帮助我们在科学研究和工程应用中解决复杂问题。
|
9月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
356 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
9月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
218 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
9月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
308 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)