R语言最优聚类数目k改进kmean聚类算法

简介: R语言最优聚类数目k改进kmean聚类算法

在本文中,我们将探讨应用聚类算法(例如k均值和期望最大化)来确定集群的最佳数量时所遇到的问题之一。从数据集本身来看,确定集群数量的最佳值的问题通常不是很清楚。在本文中,我们将介绍几种技术,可用于帮助确定给定数据集的最佳k值。

我们将在当前的R Studio环境中下载数据集:

 StudentKnowledgeData <-read_csv(“ StudentKnowledgeData.csv”)

预处理

由于此数据集的特征向量较低,因此我们将不关注特征选择方面,而是将使用所有可用特征。

summary(myDataClean)
[1] 402   5
      STG              SCG              STR              LPR
 Min.   :0.0000   Min.   :0.0000   Min.   :0.0100   Min.   :0.0000
 1st Qu.:0.2000   1st Qu.:0.2000   1st Qu.:0.2700   1st Qu.:0.2500
 Median :0.3025   Median :0.3000   Median :0.4450   Median :0.3300
 Mean   :0.3540   Mean   :0.3568   Mean   :0.4588   Mean   :0.4324
 3rd Qu.:0.4800   3rd Qu.:0.5100   3rd Qu.:0.6800   3rd Qu.:0.6500
 Max.   :0.9900   Max.   :0.9000   Max.   :0.9500   Max.   :0.9900

一旦完成预处理,以确保数据已准备就绪,可用于进一步的应用。

scaled_data = as.matrix(scale(myDataClean))

聚类算法– k表示在其中找到最佳聚类数的示例

让我们尝试为该数据创建聚类。

让我们从k = 3开始并检查结果。

kmm
K-means clustering with 3 clusters of sizes 93, 167, 142

Cluster means:
           STG        SCG        STR        LPR        PEG
1  0.573053974  0.3863411  0.2689915  1.3028712  0.1560779
2 -0.315847301 -0.4009366 -0.3931942 -0.1794893 -0.8332218
3 -0.003855777  0.2184978  0.2862481 -0.6421993  0.8776957

Clustering vector:
  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20  21
...................................................................................

Within cluster sum of squares by cluster:
[1] 394.5076 524.4177 497.7787
 (between_SS / total_SS =  29.3 %)

Available components:
[1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
[6] "betweenss"    "size"         "iter"         "ifault"

当我们检查(between_SS / total_SS)时,发现它很低。该比率实际上说明了群集之间数据点的平方总和。我们想要增加此值,并且随着群集数量的增加,我们看到它增加,但是我们不想过度拟合数据。因此,我们看到在k = 401的情况下,我们将拥有402个完全适合数据的簇。因此,我们的想法是找到一个k值,对于该值,模型不会过拟合,并且同时根据实际分布对数据进行聚类。现在让我们探讨如何解决找到最佳数目的群集的问题。


肘法

如果将集群解释的方差百分比相对于集群数量作图,则第一个集群会添加很多信息(说明很多方差),但在某个点上边际增益会下降,从而在图形。此时选择簇的数量,因此选择“肘部标准”。

wss
plot(1:k.max, wss,
     type="b", pch = 19, frame = FALSE,
     xlab="Number of clusters K",
     ylab="Total within-clusters sum of squares")
 [1] 2005.0000 1635.8573 1416.7041 1253.9959 1115.4657 1026.0506  952.4835  887.7202
 [9]  830.8277  780.2121  735.6714  693.7745  657.0939  631.5901  608.3576

该图可以在下面看到:

因此,对于k = 4,与其他k相比,between_ss / total_ss比率趋于缓慢变化且变化较小。因此对于该数据,k = 4应该是群集数量的一个不错的选择,


k均值的贝叶斯推断标准

k均值模型“几乎”是高斯混合模型,因此可以构造高斯混合模型的似然性,从而确定信息标准值。

d_clust$BIC
plot(d_clust)
Bayesian Information Criterion (BIC):
         EII       VII       EEI       VEI       EVI       VVI       EEE       EVE
1  -5735.105 -5735.105 -5759.091 -5759.091 -5759.091 -5759.091 -5758.712 -5758.712
2  -5731.019 -5719.188 -5702.988 -5635.324 -5725.379 -5729.256 -5698.095 -5707.733
3  -5726.577 -5707.840 -5648.033 -5618.274 -5580.305 -5620.816 -5693.977 -5632.555
..................................................................................
         VEE       VVE       EEV       VEV       EVV       VVV
1  -5758.712 -5758.712 -5758.712 -5758.712 -5758.712 -5758.712
2  -5704.051 -5735.383 -5742.110 -5743.216 -5752.709 -5753.597
3  -5682.312 -5642.217 -5736.306 -5703.742 -5717.796 -5760.915
..............................................................

Top 3 models based on the BIC criterion:
    EVI,3     EVI,4     EEI,5
-5580.305 -5607.980 -5613.077
> plot(d_clust)
Model-based clustering plots:

1: BIC
2: classification
3: uncertainty
4: density

Selection: 1

可以在下面看到该图,其中k = 3和k = 4是可用的最佳选择。

从这两种方法可以看出,我们可以在一定程度上确定对于聚类问题而言,聚类数的最佳值是多少。几乎没有其他技术可以使用。

hist(nb$Best.nc[1,], breaks = max(na.omit(nb$Best.nc[1,])))

在此有一个重要的要点,即对于每个群集大小,此方法始终考虑大多数索引。因此,重要的是要了解哪些索引与数据相关,并根据该索引确定最佳选择是建议的最大值还是任何其他值。
正如我们在下面查看“第二差分D-index”图所看到的,很明显,最佳聚类数是k = 4。

相关文章
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
165 4
|
5月前
|
数据采集 机器学习/深度学习 算法
【优秀设计案例】基于K-Means聚类算法的球员数据聚类分析设计与实现
本文通过K-Means聚类算法对NBA球员数据进行聚类分析,旨在揭示球员间的相似性和差异性,为球队管理、战术决策和球员评估提供数据支持,并通过特征工程和结果可视化深入理解球员表现和潜力。
199 1
【优秀设计案例】基于K-Means聚类算法的球员数据聚类分析设计与实现
|
5月前
|
安全 数据处理 开发者
R语言面向对象编程:理解R中的S3与S4类
【8月更文挑战第28天】R语言中的S3和S4类为面向对象编程提供了不同的选择。在实际应用中,开发者可以根据具体需求选择合适的类系统。对于简单的数据处理和分析任务,S3类以其简单性和灵活性可能是一个更好的选择;而对于需要更严格和复杂对象模型的任务,S4类则更具优势。掌握这两种类系统,将有助于你在R语言中更加高效和灵活地构建复杂的数据处理和分析应用。
|
5月前
|
数据采集 算法 数据可视化
基于Python的k-means聚类分析算法的实现与应用,可以用在电商评论、招聘信息等各个领域的文本聚类及指标聚类,效果很好
本文介绍了基于Python实现的k-means聚类分析算法,并通过微博考研话题的数据清洗、聚类数量评估、聚类分析实现与结果可视化等步骤,展示了该算法在文本聚类领域的应用效果。
185 1
|
2月前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
3月前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
62 4
|
3月前
|
算法 数据挖掘
基于粒子群优化算法的图象聚类识别matlab仿真
该程序基于粒子群优化(PSO)算法实现图像聚类识别,能识别0~9的数字图片。在MATLAB2017B环境下运行,通过特征提取、PSO优化找到最佳聚类中心,提高识别准确性。PSO模拟鸟群捕食行为,通过粒子间的协作优化搜索过程。程序包括图片读取、特征提取、聚类分析及结果展示等步骤,实现了高效的图像识别。
|
5月前
|
搜索推荐 算法 Java
现有一个接口DataOperation定义了排序方法sort(int[])和查找方法search(int[],int),已知类QuickSort的quickSort(int[])方法实现了快速排序算法
该博客文章通过UML类图和Java源码示例,展示了如何使用适配器模式将QuickSort类和BinarySearch类的排序和查找功能适配到DataOperation接口中,实现算法的解耦和复用。
60 1
现有一个接口DataOperation定义了排序方法sort(int[])和查找方法search(int[],int),已知类QuickSort的quickSort(int[])方法实现了快速排序算法
|
5月前
|
数据采集 自然语言处理 数据可视化
基于Python的社交媒体评论数据挖掘,使用LDA主题分析、文本聚类算法、情感分析实现
本文介绍了基于Python的社交媒体评论数据挖掘方法,使用LDA主题分析、文本聚类算法和情感分析技术,对数据进行深入分析和可视化,以揭示文本数据中的潜在主题、模式和情感倾向。
491 0
|
5月前
|
数据采集 算法 数据可视化
基于K-Means聚类算法对球员数据的聚类分析,可以自主寻找最优聚类数进行聚类
本文介绍了一个基于K-Means聚类算法的NBA球员数据分析项目,该项目通过采集和分析球员的得分、篮板、助攻等统计数据,使用轮廓系数法和拐点法确定最优聚类数,将球员分为不同群组,并提供了一个可视化界面以便直观比较不同群组的球员表现。
114 0
基于K-Means聚类算法对球员数据的聚类分析,可以自主寻找最优聚类数进行聚类