基于K-Means聚类算法对球员数据的聚类分析,可以自主寻找最优聚类数进行聚类

简介: 本文介绍了一个基于K-Means聚类算法的NBA球员数据分析项目,该项目通过采集和分析球员的得分、篮板、助攻等统计数据,使用轮廓系数法和拐点法确定最优聚类数,将球员分为不同群组,并提供了一个可视化界面以便直观比较不同群组的球员表现。

该设计旨在运用K-Means聚类算法对NBA球员数据进行聚类分析。通过该设计,主要解决的问题是如何根据球员的统计数据将他们划分为不同的聚类群组,以便更好地理解和比较球员之间的表现和特征。在这个设计中,主要采集了包括得分、篮板、助攻等多个方面的NBA球员数据。然后,利用K-Means聚类算法对这些数据进行聚类分析。通过轮廓系数法和拐点法选择聚类数量和距离度量标准,将球员划分为具有相似统计特征的群组。分析结果可以帮助教练、球探和球队管理层更好地了解球员的能力、定位和潜在价值。此外,该设计还具有一些特色设计。首先,它考虑到了球员在不同位置上的差异性,并针对不同位置的球员进行了分组分析。其次,该设计使用了合适的特征选择和数据预处理技术,以确保得到准确且有意义的聚类结果。最后,为了增加应用性,该设计提供了一个可视化界面,使用户可以直观地查看和比较不同聚类群组的球员数据。该毕业设计通过K-Means聚类算法对NBA球员数据进行了聚类分析,解决了如何根据球员统计数据划分聚类群组的问题。它具有明确的目标和功能,并且特色设计使其具有实际应用性。

图 1 数据采集结果

图 2 数据清洗结果

图 3 每场比赛投篮得分的分布直方图

图 4 罚球命中率与场均得分的关系散点图

图 5 助攻、分钟和比赛进行场次的箱线图

图 6 特征相关性检验

图 7 特征方差检验

图 8 特征卡方检验

图 9 特征结果

图 12 聚类分析拐点法

图 13 轮廓系数法

图 14 聚类分析结果

根据聚类结果进行描述:

第一类代表了一组在三分命中率、罚球命中率、进攻、防守、篮板、抢断、助攻、得分、命中率等特征上表现较为均衡的球员。

第二类代表了一组在得分、命中率等特征上表现出色的得分型球员。

第三类代表了一组在篮板、抢断等特征上具有突出表现的防守型球员。

第四类代表了一组在助攻、进攻等特征上具有突出表现的组织型球员。

第五类代表了一组在各项特征上表现较为平庸的球员。

相关文章
|
22天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
108 1
|
28天前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
177 0
|
19天前
|
存储 监控 算法
企业电脑监控系统中基于 Go 语言的跳表结构设备数据索引算法研究
本文介绍基于Go语言的跳表算法在企业电脑监控系统中的应用,通过多层索引结构将数据查询、插入、删除操作优化至O(log n),显著提升海量设备数据管理效率,解决传统链表查询延迟问题,实现高效设备状态定位与异常筛选。
65 3
|
1月前
|
算法 数据挖掘 定位技术
基于密度的聚类算法能够在含有噪声的数据集中识别出任意形状和大小的簇(Matlab代码实现)
基于密度的聚类算法能够在含有噪声的数据集中识别出任意形状和大小的簇(Matlab代码实现)
|
15天前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
126 3
|
20天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
21天前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
|
9天前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
9天前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
20天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
138 14

热门文章

最新文章