基于Python的k-means聚类分析算法的实现与应用,可以用在电商评论、招聘信息等各个领域的文本聚类及指标聚类,效果很好

简介: 本文介绍了基于Python实现的k-means聚类分析算法,并通过微博考研话题的数据清洗、聚类数量评估、聚类分析实现与结果可视化等步骤,展示了该算法在文本聚类领域的应用效果。

以微博考研话题为例

思路步骤:

数据清洗:

使用pandas读取数据文件,并进行数据清洗和预处理,包括去除重复值、数据替换等。

数据处理实现:

数据处理的过程如下:

数据清洗主要包括去重和数据转换两个步骤。

首先,通过使用drop_duplicates函数对原始数据进行去重操作。在代码中,根据内容这一列进行去重,并将去重后的结果重新赋值给新的DataFrame。这样可以确保每条内容的唯一性,避免出现重复的数据。

接下来,进行数据转换的步骤。转换主要是针对性别和是否认证两个数据,将字符串通过map函数都替换为数值,从而实现清洗效果。

数据清洗是数据分析的前提和基础,通过去重和替换等步骤,可以对原始数据进行初步的处理和整理,为后续的数据分析和挖掘提供高质量、准确的数据基础。清洗后的数据具有更好的可用性和可靠性,能够提供更准确、可靠的结果和结论,从而支持决策和解决实际问题的需求。

聚类分析(main.py):

聚类数量的选择和评估使用拐点法和轮廓系数法实现。通过评估不同聚类数量下的总的簇内离差平方和,可以找到一个合适的聚类数量,以便在K-Means算法(k-means.py)中应用于考研数据的聚类分析。选择最佳的聚类数量有助于获得更准确且有意义的聚类结果,并提供对数据的更深入理解和洞察。

拐点法:

1. 聚类数量的选择:

通过调整K值(簇的个数),探索不同聚类数量下的聚类效果。在代码中,通过设置clusters参数来确定聚类数量的范围。例如,设置clusters = 15表示尝试聚类数量从1到15的情况。

2. 总的簇内离差平方和(Total SSE)的评估:

使用K-Means算法进行聚类,并计算每个簇的样本离差平方和(SSE)。然后,将每个簇的SSE求和,得到总的簇内离差平方和(Total SSE)。在代码中,通过自定义函数k_SSE绘制了不同聚类数量(K值)与总的簇内离差平方和之和的折线图。

3. 拐点法选择最佳聚类数量:

在折线图中观察聚类数量(K值)与总的簇内离差平方和之和的关系。寻找一个拐点,即曲线开始趋于平缓的位置。这个拐点对应的聚类数量通常被认为是最佳的聚类数量。在代码中,通过绘制折线图来观察聚类数量与总的簇内离差平方和之和之间的关系,并根据拐点法选择最佳的聚类数量,拐点法得出的结果如图所示可知,该方法的拐点为3。

轮廓系数法

在选择合适的聚类数量时,使用了轮廓系数法。具体做法是,对于聚类数量从2到14的范围内的每个值,计算对应聚类数量下的轮廓系数得分。轮廓系数(silhouette score)是一种用于评估聚类质量的指标,其取值范围为[-1, 1],越接近1表示聚类效果越好。通过绘制轮廓系数得分随聚类数量变化的曲线图,可以观察到不同聚类数量下的聚类效果,并选择最佳的聚类数量。

最后,代码使用matplotlib库绘制了轮廓系数得分随聚类数量变化的曲线图,横坐标为聚类数量(N 簇),纵坐标为轮廓系数得分(score)。根据曲线图可以进行观察和判断,选择合适的聚类数量,轮廓系数法得到的结果如图可知最合适聚类数=3.

聚类分析实现与结果可视化

实现聚类分析的过程,首先读取数据,并进行数据清洗和预处理。清洗部分包括删除含有空值的数据,预处理部分对数据进行了格式修改和标准化处理。

接下来,使用轮廓系数法选择合适的聚类数量,并绘制了聚类数量与轮廓系数得分之间的曲线图。通过观察曲线图,可以选择最佳的聚类数量。

然后,根据选择的聚类数量,使用KMeans算法进行聚类,并将聚类结果可视化。代码中通过降维算法t-SNE对数据进行降维,然后绘制了降维后的数据和聚类中心的散点图,并根据聚类结果进行着色。最后完成了数据的聚类分析,帮助理解数据在不同特征上的聚类情况,聚类结果如图,其中横坐标是数据降维之后点数据与中心点距离的横坐标,Y轴是数据降维之后点数据与中心点距离的纵坐标,图中的+代表每一个类的中心点

根据对微博内容的聚类分析,可以看出用户在微博中主要讨论了考研相关话题。其中包括考研备考经历、学习进度记录、各学校考研信息分享等内容。用户们在微博中表达了对考研的焦虑、努力学习的决心以及对未来的期待。有些用户分享了自己的学习计划和成果,也有用户寻求学习伙伴互相督促。此外,还有用户分享了考研资讯、心得体会和对未来的展望。整体来看,这些微博内容反映了考研群体的学习状态和情绪,展现了他们对考研目标的追求和努力,同时也体现了他们之间的互动和支持,共同面对考研的压力和挑战。

类别一:考研备考经历分享

这类微博内容主要包括用户对自己考研备考过程中的心情体验、努力学习的决心以及对未来的期待和规划的分享。用户们在微博中记录了自己的学习进度、备考经历和成果,表达了对考研的焦虑和对未来的期

类别二:学习进度记录和资讯分享

这类微博内容主要涵盖用户的学习进度记录、复习计划安排、学习资料整理和考研资讯分享等内容。用户们在微博中分享了自己的学习计划、复习笔记、真题练习情况,也有用户分享了各学校考研信息和最新动态。

类别三:寻求学习伙伴和互相督促

这类微博内容主要是用户在微博上寻找学习伙伴,希望能够互相督促、分享学习经验和生活感悟。用户们希望通过微博平台找到志同道合的伙伴,共同努力学习,互相支持和鼓励。

相关文章
|
11天前
|
机器学习/深度学习 存储 算法
解锁文件共享软件背后基于 Python 的二叉搜索树算法密码
文件共享软件在数字化时代扮演着连接全球用户、促进知识与数据交流的重要角色。二叉搜索树作为一种高效的数据结构,通过有序存储和快速检索文件,极大提升了文件共享平台的性能。它依据文件名或时间戳等关键属性排序,支持高效插入、删除和查找操作,显著优化用户体验。本文还展示了用Python实现的简单二叉搜索树代码,帮助理解其工作原理,并展望了该算法在分布式计算和机器学习领域的未来应用前景。
|
27天前
|
监控 算法 安全
深度洞察内网监控电脑:基于Python的流量分析算法
在当今数字化环境中,内网监控电脑作为“守城卫士”,通过流量分析算法确保内网安全、稳定运行。基于Python的流量分析算法,利用`scapy`等工具捕获和解析数据包,提取关键信息,区分正常与异常流量。结合机器学习和可视化技术,进一步提升内网监控的精准性和效率,助力企业防范潜在威胁,保障业务顺畅。本文深入探讨了Python在内网监控中的应用,展示了其实战代码及未来发展方向。
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
7天前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
28 10
|
25天前
|
存储 算法 安全
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
50 17
|
22天前
|
人工智能 开发者 Python
Chainlit:一个开源的异步Python框架,快速构建生产级对话式 AI 应用
Chainlit 是一个开源的异步 Python 框架,帮助开发者在几分钟内构建可扩展的对话式 AI 或代理应用,支持多种工具和服务集成。
137 9
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
148 68
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。

热门文章

最新文章

推荐镜像

更多