基于Python的k-means聚类分析算法的实现与应用,可以用在电商评论、招聘信息等各个领域的文本聚类及指标聚类,效果很好

简介: 本文介绍了基于Python实现的k-means聚类分析算法,并通过微博考研话题的数据清洗、聚类数量评估、聚类分析实现与结果可视化等步骤,展示了该算法在文本聚类领域的应用效果。

以微博考研话题为例

思路步骤:

数据清洗:

使用pandas读取数据文件,并进行数据清洗和预处理,包括去除重复值、数据替换等。

数据处理实现:

数据处理的过程如下:

数据清洗主要包括去重和数据转换两个步骤。

首先,通过使用drop_duplicates函数对原始数据进行去重操作。在代码中,根据内容这一列进行去重,并将去重后的结果重新赋值给新的DataFrame。这样可以确保每条内容的唯一性,避免出现重复的数据。

接下来,进行数据转换的步骤。转换主要是针对性别和是否认证两个数据,将字符串通过map函数都替换为数值,从而实现清洗效果。

数据清洗是数据分析的前提和基础,通过去重和替换等步骤,可以对原始数据进行初步的处理和整理,为后续的数据分析和挖掘提供高质量、准确的数据基础。清洗后的数据具有更好的可用性和可靠性,能够提供更准确、可靠的结果和结论,从而支持决策和解决实际问题的需求。

聚类分析(main.py):

聚类数量的选择和评估使用拐点法和轮廓系数法实现。通过评估不同聚类数量下的总的簇内离差平方和,可以找到一个合适的聚类数量,以便在K-Means算法(k-means.py)中应用于考研数据的聚类分析。选择最佳的聚类数量有助于获得更准确且有意义的聚类结果,并提供对数据的更深入理解和洞察。

拐点法:

1. 聚类数量的选择:

通过调整K值(簇的个数),探索不同聚类数量下的聚类效果。在代码中,通过设置clusters参数来确定聚类数量的范围。例如,设置clusters = 15表示尝试聚类数量从1到15的情况。

2. 总的簇内离差平方和(Total SSE)的评估:

使用K-Means算法进行聚类,并计算每个簇的样本离差平方和(SSE)。然后,将每个簇的SSE求和,得到总的簇内离差平方和(Total SSE)。在代码中,通过自定义函数k_SSE绘制了不同聚类数量(K值)与总的簇内离差平方和之和的折线图。

3. 拐点法选择最佳聚类数量:

在折线图中观察聚类数量(K值)与总的簇内离差平方和之和的关系。寻找一个拐点,即曲线开始趋于平缓的位置。这个拐点对应的聚类数量通常被认为是最佳的聚类数量。在代码中,通过绘制折线图来观察聚类数量与总的簇内离差平方和之和之间的关系,并根据拐点法选择最佳的聚类数量,拐点法得出的结果如图所示可知,该方法的拐点为3。

轮廓系数法

在选择合适的聚类数量时,使用了轮廓系数法。具体做法是,对于聚类数量从2到14的范围内的每个值,计算对应聚类数量下的轮廓系数得分。轮廓系数(silhouette score)是一种用于评估聚类质量的指标,其取值范围为[-1, 1],越接近1表示聚类效果越好。通过绘制轮廓系数得分随聚类数量变化的曲线图,可以观察到不同聚类数量下的聚类效果,并选择最佳的聚类数量。

最后,代码使用matplotlib库绘制了轮廓系数得分随聚类数量变化的曲线图,横坐标为聚类数量(N 簇),纵坐标为轮廓系数得分(score)。根据曲线图可以进行观察和判断,选择合适的聚类数量,轮廓系数法得到的结果如图可知最合适聚类数=3.

聚类分析实现与结果可视化

实现聚类分析的过程,首先读取数据,并进行数据清洗和预处理。清洗部分包括删除含有空值的数据,预处理部分对数据进行了格式修改和标准化处理。

接下来,使用轮廓系数法选择合适的聚类数量,并绘制了聚类数量与轮廓系数得分之间的曲线图。通过观察曲线图,可以选择最佳的聚类数量。

然后,根据选择的聚类数量,使用KMeans算法进行聚类,并将聚类结果可视化。代码中通过降维算法t-SNE对数据进行降维,然后绘制了降维后的数据和聚类中心的散点图,并根据聚类结果进行着色。最后完成了数据的聚类分析,帮助理解数据在不同特征上的聚类情况,聚类结果如图,其中横坐标是数据降维之后点数据与中心点距离的横坐标,Y轴是数据降维之后点数据与中心点距离的纵坐标,图中的+代表每一个类的中心点

根据对微博内容的聚类分析,可以看出用户在微博中主要讨论了考研相关话题。其中包括考研备考经历、学习进度记录、各学校考研信息分享等内容。用户们在微博中表达了对考研的焦虑、努力学习的决心以及对未来的期待。有些用户分享了自己的学习计划和成果,也有用户寻求学习伙伴互相督促。此外,还有用户分享了考研资讯、心得体会和对未来的展望。整体来看,这些微博内容反映了考研群体的学习状态和情绪,展现了他们对考研目标的追求和努力,同时也体现了他们之间的互动和支持,共同面对考研的压力和挑战。

类别一:考研备考经历分享

这类微博内容主要包括用户对自己考研备考过程中的心情体验、努力学习的决心以及对未来的期待和规划的分享。用户们在微博中记录了自己的学习进度、备考经历和成果,表达了对考研的焦虑和对未来的期

类别二:学习进度记录和资讯分享

这类微博内容主要涵盖用户的学习进度记录、复习计划安排、学习资料整理和考研资讯分享等内容。用户们在微博中分享了自己的学习计划、复习笔记、真题练习情况,也有用户分享了各学校考研信息和最新动态。

类别三:寻求学习伙伴和互相督促

这类微博内容主要是用户在微博上寻找学习伙伴,希望能够互相督促、分享学习经验和生活感悟。用户们希望通过微博平台找到志同道合的伙伴,共同努力学习,互相支持和鼓励。

相关文章
|
2月前
|
缓存 Rust 算法
从混沌到秩序:Python的依赖管理工具分析
Python 的依赖管理工具一直没有标准化,主要原因包括历史发展的随意性、社区的分散性、多样化的使用场景、向后兼容性的挑战、缺乏统一治理以及生态系统的快速变化。依赖管理工具用于处理项目中的依赖关系,确保不同环境下的依赖项一致性,避免软件故障和兼容性问题。常用的 Python 依赖管理工具如 pip、venv、pip-tools、Pipenv、Poetry 等各有优缺点,选择时需根据项目需求权衡。新工具如 uv 和 Pixi 在性能和功能上有所改进,值得考虑。
105 35
|
2月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
248 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
97 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
|
2月前
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
412 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
|
2月前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
196 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
2月前
|
数据可视化 算法 数据挖掘
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
103 37
Python时间序列分析工具Aeon使用指南
|
1月前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
61 12
|
1月前
|
算法 安全 网络安全
基于 Python 的布隆过滤器算法在内网行为管理中的应用探究
在复杂多变的网络环境中,内网行为管理至关重要。本文介绍布隆过滤器(Bloom Filter),一种高效的空间节省型概率数据结构,用于判断元素是否存在于集合中。通过多个哈希函数映射到位数组,实现快速访问控制。Python代码示例展示了如何构建和使用布隆过滤器,有效提升企业内网安全性和资源管理效率。
52 9
|
3月前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
140 66
|
2月前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
119 16
Python时间序列分析:使用TSFresh进行自动化特征提取