算法系列--动态规划--背包问题(5)--二维费用背包问题(下)

简介: 算法系列--动态规划--背包问题(5)--二维费用背包问题(下)

算法系列--动态规划--背包问题(5)--二维费用背包问题(上)

https://developer.aliyun.com/article/1480864?spm=a2c6h.13148508.setting.14.5f4e4f0e82l87T

💕"要平安无事地活下去."💕

作者:Lvzi

文章主要内容:算法系列–动态规划–背包问题(5)–二维费用背包问题

大家好,今天为大家带来的是算法系列--动态规划--背包问题(5)--二维费用背包问题

二.盈利计划

链接:

https://leetcode.cn/problems/profitable-schemes/description/

分析:

本题有两个限制条件:

  1. 总人数不能超过n
  2. 总价格必须 >= minProfit

同样的也是一个二维费用的背包问题,分析思路同上,需要注意的是这里要求的是一共有多少种情况数,所以注意不选也是一种情况

状态表示:

  • dp[i][j][k]:在前i个物品中选择,总人数不超过j,总利润至少为k,一共有多少种选法

状态转移方程:

注意这里的总利润是至少为k,不是最多,k-p[i]可以小于0,如果小于0,就代表p[i]>k,也就是只要完成第i个任务就可以达到最小的利润,之前的所有任务我不选都行,但是在数组中下标不能为负数,所以当k-p[i] < 0时,应该直接当做总利润至少0的情况

代码:

class Solution {
    public int profitableSchemes(int n, int minProfit, int[] group, int[] profit) {
        int len = group.length, MOD = (int)1e9 + 7;// MOD是为了防止数据过大造成越界
        int[][][] dp = new int[len + 1][n + 1][minProfit + 1];
        for(int j = 0 ; j <= n; j++) dp[0][j][0] = 1;
        for(int i = 1; i <= len; i++) {
            for(int j = 0; j <= n; j ++) {
                for(int k = 0; k <= minProfit; k++) {
                    dp[i][j][k] = dp[i - 1][j][k];
                    if(j >= group[i - 1])
                        dp[i][j][k] += dp[i - 1][j - group[i - 1]][Math.max(0, k - profit[i - 1])];
                    dp[i][j][k] %= MOD;// 防止越界
                }
            }
        }
        return dp[len][n][minProfit];
    }
}

空间优化代码:

class Solution {
    public int profitableSchemes(int n, int minProfit, int[] group, int[] profit) {
        int len = group.length, MOD = (int)1e9 + 7;// MOD是为了防止数据过大造成越界
        int[][] dp = new int[n + 1][minProfit + 1];
        for(int j = 0 ; j <= n; j++) dp[j][0] = 1;
        for(int i = 1; i <= len; i++) {
            for(int j = n; j >= group[i - 1]; j--) {
                for(int k = minProfit; k >= 0; k--) {
                    dp[j][k] += dp[j - group[i - 1]][Math.max(0, k - profit[i - 1])];
                    dp[j][k] %= MOD;// 防止越界
                }
            }
        }
        return dp[n][minProfit];
    }
}

总结:

  • 二维费用的背包问题其实多一维的背包问题,区别就在于dp表是一个三维的dp表,但是思路和普通的背包问题类似,遵循相同的状态表示,状态转移方程,填表顺序,以及空间优化
  • 二位费用背包问题相较于普通的背包问题更加灵活,比如第二个题目中不再是不超过xxxx,而是至少实现最低利润


目录
打赏
0
0
0
0
2
分享
相关文章
|
9天前
|
算法系列之动态规划
动态规划(Dynamic Programming,简称DP)是一种用于解决复杂问题的算法设计技术。它通过将问题分解为更小的子问题,并存储这些子问题的解来避免重复计算,从而提高算法的效率。
21 4
算法系列之动态规划
【动态规划篇】穿越算法迷雾:约瑟夫环问题的奇幻密码
【动态规划篇】穿越算法迷雾:约瑟夫环问题的奇幻密码
【潜意识Java】蓝桥杯算法有关的动态规划求解背包问题
本文介绍了经典的0/1背包问题及其动态规划解法。
59 5
|
4月前
|
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
91 2
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
83 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真
该程序基于Big-Bang-Big-Crunch (BBBC)算法,在MATLAB2022A中实现目标函数最小值的计算与仿真。通过模拟宇宙大爆炸和大收缩过程,算法在解空间中搜索最优解。程序初始化随机解集,经过扩张和收缩阶段逐步逼近全局最优解,并记录每次迭代的最佳适应度。最终输出最佳解及其对应的目标函数最小值,并绘制收敛曲线展示优化过程。 核心代码实现了主循环、粒子位置更新、适应度评估及最优解更新等功能。程序运行后无水印,提供清晰的结果展示。
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。
基于Adaboost的数据分类算法matlab仿真
本程序基于Adaboost算法进行数据分类的Matlab仿真,对比线性与非线性分类效果。使用MATLAB2022A版本运行,展示完整无水印结果。AdaBoost通过迭代训练弱分类器并赋予错分样本更高权重,最终组合成强分类器,显著提升预测准确率。随着弱分类器数量增加,训练误差逐渐减小。核心代码实现详细,适合研究和教学使用。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等