算法系列--动态规划--背包问题(2)--01背包拓展题目(下)

简介: 算法系列--动态规划--背包问题(2)--01背包拓展题目(下)

算法系列--动态规划--背包问题(2)--01背包拓展题目(上)

https://developer.aliyun.com/article/1480847?spm=a2c6h.13148508.setting.14.5f4e4f0ehtknjw

💕"2024.3.28小米汽车发布"💕

作者:Lvzi

文章主要内容:算法系列–动态规划–背包问题(2)–01背包拓展题目

大家好,今天为大家带来的是算法系列--动态规划--背包问题(2)--01背包拓展题目

  1. 状态表示:
  • dp[i][j] :nums在[1,i]区间数字,和为j的最大组合数
  1. 状态转移方程
  • 和经典的背包问题一样,也是根据最后一个位置选或不选来推导状态转移方程,要注意的是,本题求的是最大组合数,也就是dp[i][j]应该是两种情况的总和
  1. 初始化
  • 初始化主要考虑第一行和第一列
  1. 填表顺序
  • 从左往右,从上往下
  1. 返回值
  • dp[n][a]

代码:

class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        int a = 0, sum = 0;
        for(int n : nums) sum += n;// 求和
        a = (target + sum) / 2;// 计算目标值
        if(a < 0 || (sum + target) % 2 == 1) return 0;
        // 创建dp表
        int n = nums.length;
        int[][] dp = new int[n + 1][a + 1];
        dp[0][0] = 1;
        // 填表
        for(int i = 1; i <= n; i++) {
            for(int j = 0; j <= a; j++) {
                dp[i][j] = dp[i - 1][j];
                if(j - nums[i - 1] >= 0)
                    dp[i][j] += dp[i - 1][j - nums[i - 1]];
            }
        }
        return dp[n][a];
    }
}

空间优化后的代码

class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        int a = 0, sum = 0;
        for(int n : nums) sum += n;// 求和
        a = (target + sum) / 2;// 计算目标值
        if(a < 0 || (sum + target) % 2 == 1) return 0;
        // 创建dp表
        int n = nums.length;
        int[] dp = new int[a + 1];
        dp[0] = 1;
        // 填表
        for(int i = 1; i <= n; i++)
            for(int j = a; j >= nums[i - 1]; j--)// 注意优化后的便利顺序
                dp[j] += dp[j - nums[i - 1]];
        return dp[a];
    }
}

第一行不初始化,放到填表之中,也是背包问题常用的一种优化手段

3.最后⼀块⽯头的重量II

链接:

https://leetcode.cn/problems/last-stone-weight-ii/description/

分析:

本题的难点就在于转化,光看数字无法得出什么有效的结论,我们将数字换为字母,看能得出什么结论:

最后发现整个问题的思路很像目标和那道题目(就在上面),但是目标和那道题目最终求的是一个具体数字,本题要求的是最后的值的绝对值尽可能的小,还是套用和目标和一样的分析思路,整个数组的和是sum,可以根据匹配的符号不同分为两部分a,b

假设a>b,则求得就是a-b的最小值,对于数组中的每一个数都是选或不选,这就是01背包问题的特征,可以使用01背包问题的思路解决

状态表示:

  • dp[i][j]:在[1,i]区间内,选取一定的数字,在不超过j的前提下,可以实现的最大和

状态转移方程和初始化都比较简单,这里不再赘述

返回值:

  • 最终返回的应该是a-b的最小值a = dp[n][sum/2],那么b = sum - a,所以最终应该返回sum - 2 * dp[n][sum/2]
class Solution {
    public int lastStoneWeightII(int[] stones) {
        int n = stones.length, sum = 0;
        for(int x : stones) sum += x;
        int[][] dp = new int[n + 1][sum/2 + 1];// 创建dp表
        // 填表
        for(int i = 1; i <= n; i++) {
            for(int j = 0; j <= sum/2; j++) {
                dp[i][j] = dp[i - 1][j];
                if(j - stones[i - 1] >= 0)
                    dp[i][j] = Math.max(dp[i][j],dp[i - 1][j - stones[i - 1]] + stones[i - 1]);
            }
        }
        return sum - 2 * dp[n][sum/2];// 返回(a-b)绝对值的最小值
    }
}

空间优化后的代码:

class Solution {
    public int lastStoneWeightII(int[] stones) {
        int n = stones.length, sum = 0;
        for(int x : stones) sum += x;
        
        int[] dp = new int[sum/2 + 1];// 创建dp表
        // 填表
        for(int i = 1; i <= n; i++)
            for(int j = sum/2; j >= stones[i-1]; j--) 
                dp[j] = Math.max(dp[j],dp[j - stones[i - 1]] + stones[i - 1]);
        return sum - 2 * dp[sum/2];// 返回(a-b)绝对值的最小值
    }
}

以上就是算法系列--动态规划--背包问题(2)--01背包拓展题目全部内容,下一篇文章将会带来完全背包问题的介绍,敬请期待,我是LvZi


目录
相关文章
|
7天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
24 2
|
1月前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
60 2
动态规划算法学习三:0-1背包问题
|
1月前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
61 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
22天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
7天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
8天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
9天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
8天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
8天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
25 3
|
19天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。