算法系列--动态规划--背包问题(2)--01背包拓展题目(上)

简介: 算法系列--动态规划--背包问题(2)--01背包拓展题目

💕"2024.3.28小米汽车发布"💕

作者:Lvzi

文章主要内容:算法系列–动态规划–背包问题(2)–01背包拓展题目

大家好,今天为大家带来的是算法系列--动态规划--背包问题(2)--01背包拓展题目

1.分割等和⼦集

链接:

https://leetcode.cn/problems/partition-equal-subset-sum/

分析:

本题属于01背包问题

从数组中选择一些数据,使其刚好符合某种带限制条件的和,就符合01背包问题的思路

01背包问题就是选择一些物品,实现不超过背包最大容量的最大价值

本题是选择一些数,判断能够实现最大和刚好等于sum/2的情况

还有一个是在分析状态转移方程时,最后一个位置选或者不选也可以用01问题

代码:

class Solution {
    public boolean canPartition(int[] nums) {
        int n = nums.length;
        int sum = 0;
        for(int x : nums) sum += x;// 求和
        if(sum % 2 == 1) return false;// 特判
        int N = sum / 2;
        // 创建dp表
        boolean[][] dp = new boolean[n + 1][N + 1];
        dp[0][0] = true;// 初始化
        for(int i = 1; i <= nums.length; i++) {
            for(int j = 1; j <= sum / 2; j++) {
                dp[i][j] = (dp[i - 1][j]) 
                            || (j - nums[i - 1] >= 0 && dp[i - 1][j - nums[i - 1]]);
            }
        }
        // 返回值
        return dp[nums.length][sum / 2];
    }
}

空间优化后的代码:

class Solution {
    public boolean canPartition(int[] nums) {
        int n = nums.length, sum = 0;
        for(int x : nums) sum += x;
        if(sum % 2 == 1) return false;
        int N = sum / 2;
        boolean[] dp = new boolean[N + 1];
        dp[0] = true;
        for(int i = 1; i <= n; i++) 
            for(int j = sum / 2; j >= nums[i - 1]; j--) 
                dp[j] = dp[j] || dp[j - nums[i - 1]];
        return dp[sum / 2];
    }
}

2.⽬标和

链接:

https://leetcode.cn/problems/target-sum/

分析:

题目要求是必须用到数组里面的所有数字进行拼接(可正可负),判断可以拼接为target的最大组合数

首先,因为要用到数组中所有的数字,所以可以先把数组总和sum求出,接着我们可以把sum拆分为两部分,一部分是拼接+的数字总和a,另一部分是拼接-的总和b(b是大于0的,这里仅仅只是数字的相加),则可以得出:

  • a + b == sum
  • a - b == target

将两式相加可得:

a == (sum + target) / 2

示意图:

那么本道题就可以转化为在数组中挑选若干个数,使其和等于a的最大组合数,这不就是01背包问题吗!,在一个集合内部挑选若干个物品,在满足某个限制的前提下,实现xxxx

说明:求出a之后还需要判断是否越界,主要有两种不符合条件的情况:

  1. a < 0,因为本题的target可以是负数,所以a可能是负数,但是数组中的数全是大于0的,根部无法凑出一个小于0的数
  2. (sum + target) / 2 != 0:当除不尽的时候就代表不存在这样的a,也就无法凑出target,返回0

接下来就是动态规划的思路:

算法系列--动态规划--背包问题(2)--01背包拓展题目(下)


目录
相关文章
|
7天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
24 2
|
1月前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
60 2
动态规划算法学习三:0-1背包问题
|
1月前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
61 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
22天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
7天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
8天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
9天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
8天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
8天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
25 3
|
19天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。