使用Python实现K均值聚类算法

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 使用Python实现K均值聚类算法

K均值(K-Means)算法是一种常用的聚类算法,它将数据集分成K个簇,每个簇的中心点代表该簇的质心,使得每个样本点到所属簇的质心的距离最小化。在本文中,我们将使用Python来实现一个基本的K均值聚类算法,并介绍其原理和实现过程。

什么是K均值算法?

K均值算法是一种迭代的聚类算法,其基本思想是通过不断迭代优化簇的中心点位置,使得每个样本点到其所属簇的质心的距离最小化。算法首先随机初始化K个质心,然后将每个样本点分配给距离最近的质心所属的簇,然后更新每个簇的质心,重复这个过程直到簇不再发生变化或达到最大迭代次数。

使用Python实现K均值算法

1. 导入必要的库

首先,我们需要导入必要的Python库:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs

2. 准备数据

接下来,我们准备一个示例数据集:

X, _ = make_blobs(n_samples=300, centers=4, cluster_std=0.6, random_state=0)

3. 实现K均值算法

接下来,我们实现K均值算法:

def k_means(X, n_clusters, max_iters=100):
    centroids = X[np.random.choice(len(X), n_clusters, replace=False)]
    for _ in range(max_iters):
        clusters = [[] for _ in range(n_clusters)]
        for x in X:
            distances = [np.linalg.norm(x - c) for c in centroids]
            cluster = np.argmin(distances)
            clusters[cluster].append(x)
        new_centroids = [np.mean(c, axis=0) for c in clusters]
        if np.allclose(new_centroids, centroids):
            break
        centroids = new_centroids
    return np.array(centroids), clusters

n_clusters = 4
centroids, clusters = k_means(X, n_clusters)

4. 可视化结果

最后,我们可以绘制数据点和聚类中心的可视化图:

plt.figure(figsize=(8, 6))
for i, cluster in enumerate(clusters):
    cluster = np.array(cluster)
    plt.scatter(cluster[:, 0], cluster[:, 1], label=f'Cluster {i+1}')
plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', color='black', label='Centroids')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('K-Means Clustering')
plt.legend()
plt.show()

结论

通过本文的介绍,我们了解了K均值聚类算法的基本原理和Python实现方法。K均值算法是一种简单而有效的聚类算法,适用于各种类型的数据集,并且具有较快的运行速度。通过使用Python的NumPy库,我们可以实现K均值算法,并对数据进行聚类分析。

希望本文能够帮助读者理解K均值聚类算法的基本概念,并能够在实际应用中使用Python实现K均值算法。

目录
相关文章
|
1月前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
48 0
|
1月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
60 4
|
1月前
|
机器学习/深度学习 缓存 算法
Python算法设计中的时间复杂度与空间复杂度,你真的理解对了吗?
【10月更文挑战第4天】在Python编程中,算法的设计与优化至关重要,尤其在数据处理、科学计算及机器学习领域。本文探讨了评估算法性能的核心指标——时间复杂度和空间复杂度。通过详细解释两者的概念,并提供快速排序和字符串反转的示例代码,帮助读者深入理解这些概念。同时,文章还讨论了如何在实际应用中平衡时间和空间复杂度,以实现最优性能。
65 6
|
13天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
8天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
36 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
8天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
28 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
8天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
45 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
12天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
30 2
|
1月前
|
存储 机器学习/深度学习 算法
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
蓝桥杯Python编程练习题的集合,涵盖了从基础到提高的多个算法题目及其解答。
60 3
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
|
22天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
25 3
下一篇
无影云桌面