【python】python职业人群体检数据分析(代码+数据)【独一无二】

简介: 【python】python职业人群体检数据分析(代码+数据)【独一无二】


👉博__主👈:米码收割机

👉技__能👈:C++/Python语言

👉公众号👈:测试开发自动化【获取源码+商业合作】

👉荣__誉👈:阿里云博客专家博主、51CTO技术博主

👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。



1. 任务描述

有的职业危害因素对人体血液等系统产生影响,在此针对一次职业人群体检的部分数据使用Python进行数据分析和可视化描述。

要求:

1.导入模块:pandas、numpy、matplotlib.pyplot;定义可以正常显示中文标签和负号;

2.获取数据,导入待处理数据testdata.xls,并显示前5行;

3.分析数据

  • 查看data的数据类型、表结构、并统计各字段空缺的个数;
  • 删除全为空的列及身份证号为空的数据;
  • 将“开始从事某工作年份”规范为4位数字年份,如“2018”,并将列名修改为“参加工作时间”;
  • 增加列“工龄”(体检年份-参加工作时间)和“年龄”(体检时间-出生年份)两列;
  • 统计不同性别的白细胞计数均值,并画出柱状图;
  • 统计不同年龄段的白细胞计数,并画出柱状图,年龄段划分为:小于等于30,31至40,41至50以及大于50四个段。

👇👇👇 关注公众号,回复 “体检数据分析” 获取源码👇👇👇


2. 功能展示

2.1 导入模块获取数据

2.2 分析数据类型数

👇👇👇 关注公众号,回复 “体检数据分析” 获取源码👇👇👇

2.3 分析数据表结构、并统计各字段空缺的个数

2.4 统计各字段空缺的个数

2.5 删除全为空的列及身份证号为空的数据

👇👇👇 关注公众号,回复 “体检数据分析” 获取源码👇👇👇

2.6 将列名修改为“参加工作时间”

2.7 增加列“工龄”和“年龄”

👇👇👇 关注公众号,回复 “体检数据分析” 获取源码👇👇👇

2.8 统计不同性别的白细胞计数均值柱状图

2.9 统计不同年龄段的白细胞计数柱状图

👇👇👇 关注公众号,回复 “体检数据分析” 获取源码👇👇👇


三、部分代码

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
df = pd.read_excel("testdata.xls")
data = df.head()#默认读取前5行的数据
print(df.info())
print(df.dtypes)
print(df.shape)
print(df.isnull().sum())
# 其余代码略....
# 👇👇👇 关注公众号,回复 “体检数据分析” 获取源码👇👇👇

👇👇👇 关注公众号,回复 “体检数据分析” 获取源码👇👇👇


相关文章
|
6天前
|
数据采集 数据安全/隐私保护 Python
从零开始:用Python爬取网站的汽车品牌和价格数据
在现代化办公室中,工程师小李和产品经理小张讨论如何获取懂车帝网站的汽车品牌和价格数据。小李提出使用Python编写爬虫,并通过亿牛云爬虫代理避免被封禁。代码实现包括设置代理、请求头、解析网页内容、多线程爬取等步骤,确保高效且稳定地抓取数据。小张表示理解并准备按照指导操作。
从零开始:用Python爬取网站的汽车品牌和价格数据
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
23天前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
58 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
2月前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
78 33
|
1月前
|
数据采集 Web App开发 数据可视化
Python用代理IP获取抖音电商达人主播数据
在当今数字化时代,电商直播成为重要的销售模式,抖音电商汇聚了众多达人主播。了解这些主播的数据对于品牌和商家至关重要。然而,直接从平台获取数据并非易事。本文介绍如何使用Python和代理IP高效抓取抖音电商达人主播的关键数据,包括主播昵称、ID、直播间链接、观看人数、点赞数和商品列表等。通过环境准备、代码实战及数据处理与可视化,最终实现定时任务自动化抓取,为企业决策提供有力支持。
|
2月前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
52 10
|
2月前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
2月前
|
数据采集 存储 XML
python实战——使用代理IP批量获取手机类电商数据
本文介绍了如何使用代理IP批量获取华为荣耀Magic7 Pro手机在电商网站的商品数据,包括名称、价格、销量和用户评价等。通过Python实现自动化采集,并存储到本地文件中。使用青果网络的代理IP服务,可以提高数据采集的安全性和效率,确保数据的多样性和准确性。文中详细描述了准备工作、API鉴权、代理授权及获取接口的过程,并提供了代码示例,帮助读者快速上手。手机数据来源为京东(item.jd.com),代理IP资源来自青果网络(qg.net)。
|
5月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
93 1
|
5月前
|
机器学习/深度学习 数据可视化 数据挖掘
数据可视化大不同!Python数据分析与机器学习中的Matplotlib、Seaborn应用新视角!
在数据科学与机器学习领域,数据可视化是理解数据和优化模型的关键。Python凭借其强大的可视化库Matplotlib和Seaborn成为首选语言。本文通过分析一份包含房屋面积、卧室数量等特征及售价的数据集,展示了如何使用Matplotlib绘制散点图,揭示房屋面积与售价的正相关关系;并利用Seaborn的pairplot探索多变量间的关系。在机器学习建模阶段,通过随机森林模型展示特征重要性的可视化,帮助优化模型。这两个库在数据分析与建模中展现出广泛的应用价值。
68 2

推荐镜像

更多