从动态规划到贪心算法:最长递增子序列问题的方法全解析

简介: 从动态规划到贪心算法:最长递增子序列问题的方法全解析



题型简介

经典例题:300. 最长递增子序列 - 力扣(LeetCode)

最长递增子序列(Longest Increasing subsequence,LIS)是一个经典的问题。最长递增子序列是指在一个序列中,以不下降的顺序连续排列的一系列元素的子序列。这个子序列的长度就是最长递增子序列的长度。

题解代码

虽然注释详细,但与后文解题思路对应食用风味更佳~

#include <iostream>
#include <vector>
 
using namespace std;
 
int lengthOfLIS(vector<int>& nums) 
{
    // 如果输入序列为空,返回 0
    if (nums.empty()) 
    {
        return 0;
    }
 
    // 定义 dp 数组,长度为输入序列的长度
    int dp[nums.size()];
    // 初始化 dp 数组,将所有元素初始化为 1
    for (int i = 0; i < nums.size(); i++) 
    {
        dp[i] = 1;
    }
 
    // 记录最长递增子序列的长度
    int maxn = 1;
 
    // 遍历输入序列,从第 2 个元素开始,因为第一个元素的 dp[0] 一定是 1
    for (int i = 1; i < nums.size(); i++) 
    {
        // 遍历之前的元素,找到满足条件的索引 j
        for (int j = 0; j < i; j++) 
        {
            // 如果当前元素小于之前的元素,并且之前元素的最长递增子序列长度加 1 大于当前元素的最长递增子序列长度
            if ((nums[j] < nums[i]) && (dp[j] + 1 > dp[i])) 
            {
                // 更新当前元素的最长递增子序列长度为之前元素的最长递增子序列长度加 1
                // 因为if条件是nums[j] < nums[i],所以当前i位置的num一定是可以往j位置的数字后拼接作为递增子序列的
                // 所以更新当前i的dp作为新的当前dp[i]
                dp[i] = dp[j] + 1;
            }
        }
 
        // 在与每次遍历完当前i的j后更新的dp[i]与之前的maxn作对比
        // 得到当前最长递增子序列的长度
        if (dp[i] > maxn) 
        {
            maxn = dp[i];
        }
    }
 
    // 返回最长递增子序列的长度
    return maxn;
}
 
int main() 
{
    vector<int> nums = { 10, 9, 2, 5, 3, 7, 101, 18 };
    // 输出:4
    cout << lengthOfLIS(nums) << endl;
 
    return 0;
}

解题思路

1. 贪心策略(Greedy algorithms):

贪心算法的核心是以少博多,以最优解为目标

贪心策略是选择当前未处理元素中最小的元素,将其添加到最长递增子序列的末尾。这种策略的基本思想是尽可能地选择较小的元素,以保证子序列的递增性。

在代码中,我们通过比较当前元素 nums[i] 和之前元素 nums[j]j < i)的大小来更新最长递增子序列的长度。如果 nums[j] < nums[i],并且 dp[j] + 1 > dp[i],我们就选择 nums[j] 作为最长递增子序列的一部分,并更新 dp[i]dp[j] + 1

2. 动态规划(Dynamic programming):

动态规划是一种通过将问题分解为子问题来解决问题的方法。在最长递增子序列问题中,动态规划的基本思想是通过递推公式来计算每个元素的最长递增子序列长度。

在代码中,我们使用了一个长度为 nums.size() 的数组 dp 来存储每个元素的最长递增子序列长度。递推公式为 dp[i] = max(dp[j] + 1, dp[i]),其中 j < i 表示之前的元素。通过递推公式,我们可以逐步计算出每个元素的最长递增子序列长度。

剔骨刀(精细点)

    for (int i = 1; i < nums.size(); i++) 
    {
        for (int j = 0; j < i; j++) 
        {
            if ((nums[j] < nums[i]) && (dp[j] + 1 > dp[i])) 
            {
                dp[i] = dp[j] + 1;
            }
        }
 
        if (dp[i] > maxn) 
        {
            maxn = dp[i];
        }
    }

动态规划问题难点在于它的递推公式理解。

这里的 (nums[j] < nums[i]) && (dp[j] + 1 > dp[i]) 中的 dp[j] 可以当做前面已经在该下标上取得的最长递增子序列的个数,因为if条件(nums[j] < nums[i]) && (dp[j] + 1 > dp[i]),当条件通过时说明当前 i 位置的num一定是可以往j位置的数字后拼接作为递增子序列的,所以dp[j] + 1的意思就是说,只要在if条件内他都可以拼接,但是如果dp[j] + 1都小于dp[i]的话,那么它就不是最长子序列了,不会进行 +1 ,保留原来的 dp[i] 大小。  


目录
相关文章
|
1天前
|
存储 机器学习/深度学习 算法
|
2天前
|
机器学习/深度学习 人工智能 运维
人工智能平台PAI 操作报错合集之请问Alink的算法中的序列异常检测组件,是对数据进行分组后分别在每个组中执行异常检测,而不是将数据看作时序数据进行异常检测吧
阿里云人工智能平台PAI (Platform for Artificial Intelligence) 是阿里云推出的一套全面、易用的机器学习和深度学习平台,旨在帮助企业、开发者和数据科学家快速构建、训练、部署和管理人工智能模型。在使用阿里云人工智能平台PAI进行操作时,可能会遇到各种类型的错误。以下列举了一些常见的报错情况及其可能的原因和解决方法。
|
3天前
|
机器学习/深度学习 数据采集 人工智能
【热门话题】AI作画算法原理解析
本文解析了AI作画算法的原理,介绍了基于机器学习和深度学习的CNNs及GANs在艺术创作中的应用。从数据预处理到模型训练、优化,再到风格迁移、图像合成等实际应用,阐述了AI如何生成艺术作品。同时,文章指出未来发展中面临的版权、伦理等问题,强调理解这些算法对于探索艺术新境地的重要性。
15 3
|
3天前
|
算法 数据安全/隐私保护 数据格式
基于混沌序列的图像加解密算法matlab仿真,并输出加解密之后的直方图
该内容是一个关于混沌系统理论及其在图像加解密算法中的应用摘要。介绍了使用matlab2022a运行的算法,重点阐述了混沌系统的特性,如确定性、非线性、初值敏感性等,并以Logistic映射为例展示混沌序列生成。图像加解密流程包括预处理、混沌序列生成、数据混淆和扩散,以及密钥管理。提供了部分核心程序,涉及混沌序列用于图像像素的混淆和扩散过程,通过位操作实现加密。
|
4天前
|
编解码 算法 数据可视化
【视频】时间序列分类方法:动态时间规整算法DTW和R语言实现
【视频】时间序列分类方法:动态时间规整算法DTW和R语言实现
|
4天前
|
存储 算法 安全
|
11天前
|
算法
代码随想录算法训练营第五十六天 | LeetCode 647. 回文子串、516. 最长回文子序列、动态规划总结
代码随想录算法训练营第五十六天 | LeetCode 647. 回文子串、516. 最长回文子序列、动态规划总结
31 1
|
11天前
|
机器学习/深度学习 存储 人工智能
一阶优化算法启发,北大林宙辰团队提出具有万有逼近性质的神经网络架构的设计方法
【4月更文挑战第19天】北京大学林宙辰团队在深度学习领域取得突破,提出基于一阶优化算法的神经网络设计方法,构建具有万有逼近性质的模型,提升训练速度和泛化能力。该方法利用一阶导数信息,高效处理大规模问题。虽然面临非光滑优化和收敛速度挑战,但团队通过正则化和自适应学习率等策略进行改进,相关研究在多个标准数据集上表现出色。
10 1
|
18天前
|
算法
算法系列--动态规划--背包问题(5)--二维费用背包问题(下)
算法系列--动态规划--背包问题(5)--二维费用背包问题(下)
14 0
|
10天前
|
机器学习/深度学习 人工智能 算法
基于DCT和扩频的音频水印嵌入提取算法matlab仿真
本文介绍了结合DCT和扩频技术的音频水印算法,用于在不降低音质的情况下嵌入版权信息。在matlab2022a中实现,算法利用DCT进行频域处理,通过扩频增强水印的隐蔽性和抗攻击性。核心程序展示了水印的嵌入与提取过程,包括DCT变换、水印扩频及反变换步骤。该方法有效且专业,未来研究将侧重于提高实用性和安全性。

推荐镜像

更多