雷达基础导论及MATLAB仿真

简介: 雷达基础导论及MATLAB仿真

前言

本文对雷达基础导论的内容以思维导图的形式呈现,有关仿真部分进行了讲解实现。


一、雷达基础导论

思维导图如下图所示,如有需求请到文章末尾端自取。

二、Matlab 仿真

1、SNR 相对检测距离的仿真

雷达方程:

image.png

下面在三种不同数值的 RCS(雷达截面积)和三种不同数值的雷达峰值功率的情况下,对 SNR(信噪比) 相对检测距离的情况进行 Matlab 仿真

①、Matlab 源码

radar_eq.m

function [snr] = radar_eq(pt, freq, g, sigma, te, b, nf, loss, range)
% This program implements Eq. (1.56)
c = 3.0e+8; % speed of light
lambda = c / freq; % wavelength
p_peak = 10*log10(pt); % convert peak power to dB
lambda_sqdb = 10*log10(lambda^2); % compute wavelength square in dB
sigmadb = 10*log10(sigma); % convert sigma to dB
four_pi_cub = 10*log10((4.0 * pi)^3); % (4pi)^3 in dB
k_db = 10*log10(1.38e-23); % Boltzman's constant in dB
te_db = 10*log10(te); % noise temp. in dB
b_db = 10*log10(b); % bandwidth in dB
range_pwr4_db = 10*log10((range).^4); % vector of target range^4 in dB
% Implement Equation (1.56)
num = p_peak + g + g + lambda_sqdb + sigmadb;
den = four_pi_cub + k_db + te_db + b_db + nf + loss + range_pwr4_db;
snr = num - den;
return

相关参数说明:

符号 描述 单位 状态
pt 峰值功率 W 输入
freq 雷达中心频率 Hz 输入
g 天线增益 dB 输入
sigma 目标截面积 m 2 m^2m2 输入
te 有效噪声温度 K 输入
b 带宽 Hz 输入
nf 噪声系数 dB 输入
loss 雷达损失 dB 输入
range 目标距离(单位或矢量) m 输入
snr SNR(单值或矢量,根据输入距离) dB 输出

函数 “radar.m” 的设计使它对于输入“距离”,可以接受单个数值,或包含很多距离值的矢量

fig1_12.m

close all
clear all
pt = 1.5e+6; % peak power in Watts
freq = 5.6e+9; % radar operating frequency in Hz
g = 45.0; % antenna gain in dB
sigma = 0.1; % radar cross section in m squared
te = 290.0; % effective noise temperature in Kelvins
b = 5.0e+6; % radar operating bandwidth in Hz
nf = 3.0; %noise figure in dB
loss = 6.0; % radar losses in dB
range = linspace(25e3,165e3,1000); % range to target from 25 Km 165 Km, 1000 points
snr1 = radar_eq(pt, freq, g, sigma, te, b, nf, loss, range);
snr2 = radar_eq(pt, freq, g, sigma/10, te, b, nf, loss, range);
snr3 = radar_eq(pt, freq, g, sigma*10, te, b, nf, loss, range);
% plot SNR versus range
figure(1)
rangekm  = range ./ 1000;
plot(rangekm,snr3,'k',rangekm,snr1,'k -.',rangekm,snr2,'k:')
grid
legend('\sigma = 0 dBsm','\sigma = -10dBsm','\sigma = -20 dBsm')
xlabel ('Detection range - Km');
ylabel ('SNR - dB');
snr1 = radar_eq(pt, freq, g, sigma, te, b, nf, loss, range);
snr2 = radar_eq(pt*.4, freq, g, sigma, te, b, nf, loss, range);
snr3 = radar_eq(pt*1.8, freq, g, sigma, te, b, nf, loss, range);
figure (2)
plot(rangekm,snr3,'k',rangekm,snr1,'k -.',rangekm,snr2,'k:')
grid
legend('Pt = 2.16 MW','Pt = 1.5 MW','Pt = 0.6 MW')
xlabel ('Detection range - Km');
ylabel ('SNR - dB');

②、仿真

仿真参数默认如下:

峰值功率 Pt=1.5 MW,工作频率 f0=5.6 GHz,天线增益 G=45 dB,有效温度 Te=290 K,雷达损失 L=6 dB,噪声系数 F=3 dB,雷达带宽B=5 MHz,雷达最小和最大检测距离是Rmin=25 km 和 Rmax=165 km,假定目标截面积 σ=0.1 m 2

1)、不同 RCS,SNR 相对检测距离仿真

对三种不同数值的 RCS,SNR 相对检测距离的曲线

注:分贝平方米(dBsm):用雷达散射截面的对数值的十倍来表示,符号是σ dBsm,单位是分贝平方米(dBsm),即σ dBsm=10lgσ。例如,RCS 值 0.1 平方米对应的是 -10 分贝平方米(即 -10dBsm)。

结论:从图中可以看到 RCS(雷达截面积)越大,雷达信噪比越大,且随着距离的增加,雷达信噪比逐渐减小;

2)、不同雷达峰值功率,SNR 相对检测距离仿真

对三种不同数值的雷达峰值功率,SNR 相对检测距离的曲线

结论:从图中可以看到雷达峰值功率越大,雷达信噪比越大,且随着距离的增加,雷达信噪比逐渐减小

2、脉冲宽度相对所要求的 SNR 仿真

雷达检测门限:

image.png

下面在三种不同的检测距离数值的情况下,对脉冲宽度相对所要求 SNR(信噪比)的情况进行 Matlab 仿真

①、Matlab 源码

fig1_13.m

close all
clear all
pt = 1.e+6; % peak power in Watts
freq = 5.6e+9; % radar operating frequency in Hz
g = 40.0; % antenna gain in dB
sigma = 0.1; % radar cross section in m squared
te =300.0; % effective noise temperature in Kelvins
nf = 5.0; %noise figure in dB
loss = 6.0; % radar losses in dB
range = [75e3,100e3,150e3]; % three range values
snr_db = linspace(5,20,200); % SNR values from 5 dB to 20 dB 200 points
snr = 10.^(0.1.*snr_db); % convert snr into base 10
gain = 10^(0.1*g); %convert antenna gain into base 10
loss = 10^(0.1*loss); % convert losses into base 10
F = 10^(0.1*nf); % convert noise figure into base 10
lambda = 3.e8 / freq; % compute wavelength
% Implement Eq.(1.57)
den = pt * gain * gain * sigma * lambda^2;
num1 = (4*pi)^3 * 1.38e-23 * te * F * loss * range(1)^4 .* snr;
num2 = (4*pi)^3 * 1.38e-23 * te * F * loss * range(2)^4 .* snr;
num3 = (4*pi)^3 * 1.38e-23 * te * F * loss * range(3)^4 .* snr;
tau1 = num1 ./ den ;
tau2 = num2 ./ den;
tau3 = num3 ./ den;
% plot tau versus snr
figure(1)
semilogy(snr_db,1e6*tau1,'k',snr_db,1e6*tau2,'k -.',snr_db,1e6*tau3,'k:')
grid
legend('R = 75 Km','R = 100 Km','R = 150 Km')
xlabel ('Minimum required SNR - dB');
ylabel ('\tau (pulse width) in \mu sec');

②、仿真

仿真参数参考上面代码

以下为不同检测距离,脉冲宽度相对所要求的 SNR 仿真

对三种不同的检测距离数值,脉冲宽度相对所要求的 SNR 曲线

结论:从图中可以看到随着雷达 SNR 的增加,脉冲宽度逐渐增大;对应于同一雷达 SNR,距离越远所需要的脉冲宽度越宽

3、功率孔径积相对于距离仿真 及 平均功率相对于孔径大小仿真

搜索雷达方程:

image.png

①、Matlab 源码

power_aperture.m

function PAP = power_aperture(snr,tsc,sigma,range,te,nf,loss,az_angle,el_angle)
% This program implements Eq. (1.67)
Tsc = 10*log10(tsc); % convert Tsc into dB
Sigma = 10*log10(sigma); % convert sigma to dB
four_pi = 10*log10(4.0 * pi); % (4pi) in dB
k_db = 10*log10(1.38e-23); % Boltzman's constant in dB
Te = 10*log10(te); % noise temp. in dB
range_pwr4_db = 10*log10(range.^4); % target range^4 in dB
omega = (az_angle/57.296) * (el_angle / 57.296); % compute search volume in steraradians
Omega = 10*log10(omega); % search volume in dB
% implement Eq. (1.67)
PAP = snr + four_pi + k_db + Te + nf + loss + range_pwr4_db + Omega ...
    - Sigma - Tsc;
return

相关参数说明:

符号 描述 单位 状态
snr 灵敏度snr dB 输入
tsc 扫描时间 s 输入
sigma 目标截面积 m 2 m^2m2 输入
range 目标距离(单位或矢量) m 输入
te 有效噪声温度 K 输入
nf 噪声系数 dB 输入
loss 雷达损失 dB 输入
az_angle 搜索区域的方位角范围 ∘ ^\circ 输入
el_angle 搜索区域的俯仰角范围 ∘ ^\circ 输入
PAP 功率孔径积 dB 输出

fig1_16.m

close all
clear all
tsc = 2.5; % Scan time i s2.5 seconds
sigma = 0.1; % radar cross section in m sqaured
te = 900.0; % effective noise temperature in Kelvins
snr = 15; % desired SNR in dB
nf = 6.0; %noise figure in dB
loss = 7.0; % radar losses in dB
az_angle = 2; % search volume azimuth extent in degrees
el_angle = 2; %serach volume elevation extent in degrees
range = linspace(20e3,250e3,1000); % range to target from 20 Km 250 Km, 1000 points
pap1 = power_aperture(snr,tsc,sigma/10,range,te,nf,loss,az_angle,el_angle);
pap2 = power_aperture(snr,tsc,sigma,range,te,nf,loss,az_angle,el_angle);
pap3 = power_aperture(snr,tsc,sigma*10,range,te,nf,loss,az_angle,el_angle);
% plot power aperture prodcut versus range
% figure 1.16a
figure(1)
rangekm  = range ./ 1000;
plot(rangekm,pap1,'k',rangekm,pap2,'k -.',rangekm,pap3,'k:')
grid
legend('\sigma = -20 dBsm','\sigma = -10dBsm','\sigma = 0 dBsm')
xlabel ('Detection range in Km');
ylabel ('Power aperture product in dB');
% generate Figure 1.16b
lambda = 0.03; % wavelength in meters
G = 45; % antenna gain in dB
ae = linspace(1,25,1000);% aperture size 1 to 25 meter squared, 1000 points
Ae = 10*log10(ae);
range = 250e3; % rnage of interset is 250 Km
pap1 = power_aperture(snr,tsc,sigma/10,range,te,nf,loss,az_angle,el_angle);
pap2 = power_aperture(snr,tsc,sigma,range,te,nf,loss,az_angle,el_angle);
pap3 = power_aperture(snr,tsc,sigma*10,range,te,nf,loss,az_angle,el_angle);
Pav1 = pap1 - Ae;
Pav2 = pap2 - Ae;
Pav3 = pap3 - Ae;
figure(2)
plot(ae,Pav1,'k',ae,Pav2,'k -.',ae,Pav3,'k:')
grid
xlabel('Aperture size in square meters')
ylabel('Pav in dB')
legend('\sigma = -20 dBsm','\sigma = -10dBsm','\sigma = 0 dBsm')

②、仿真

仿真参数默认如下:

σ \sigmaσ T s c T_{sc}Tsc θ e = θ a \theta_e=\theta_aθe=θa R T_e n f ∗ l o s s nf*lossnfloss s n r snrsnr
0.1 m 2 0.1m^20.1m2 2.5 s 2.5s2.5s 2 ∘ 2^\circ2 252 k m 252km252km 900 K 900K900K 13 d B 13dB13dB 15 d B 15dB15dB
1)、不同 RCS,功率孔径积相对于距离仿真

对三种不同的 RCS,功率孔径积相对于检测距离曲线

结论:从图中可以看到随着检测距离的增加,功率孔径积增大;雷达 RCS 越大,功率孔径积也越小

2)、不同 RCS,平均功率相对于孔径大小仿真

对三种不同的 RCS,雷达平均功率相对于孔径大小曲线

结论:从图中可以看到随着雷达孔径大小的增加,雷达平均功率呈现下降趋势;雷达 RCS 越大,雷达孔径越小

4、SNR 增益相对积累脉冲数仿真

image.png

注:(SNR)1 是产生给定检测概率所要求的单个脉冲的SNR

①、Matlab 源码

pulse_integration.m

function [snrout] = pulse_integration(pt, freq, g, sigma, te, b, nf, loss, range,np,ci_nci)
 snr1 = radar_eq(pt, freq, g, sigma, te, b, nf, loss, range) % single pulse SNR
 snr1=0
if (ci_nci == 1) % coherent integration
   snrout = snr1 + 10*log10(np);
else % non-coherent integration
    if (ci_nci == 2)
        snr_nci = 10.^(snr1./10);
        val1 = (snr_nci.^2) ./ (4.*np.*np);
        val2 = snr_nci ./ np;
        val3 = snr_nci ./ (2.*np);
        SNR_1 = val3 + sqrt(val1 + val2); % Equation 1.87 of text
        LNCI = (1+SNR_1) ./ SNR_1; % Equation 1.85 of text
        snrout = snr1 + 10*log10(np) - 10*log10(LNCI);
    end
end
return

相关参数说明:

符号 描述 单位 状态
pt 峰值功率 W 输入
freq 雷达中心频率 Hz 输入
g 天线增益 dB 输入
sigma 目标截面积 m 2 m^2m2 输入
te 有效噪声温度 K 输入
b 带宽 Hz 输入
nf 噪声系数 dB 输入
loss 雷达损失 dB 输入
range 目标距离(单位或矢量) m 输入
np 积累脉冲数 输入
ci_nci 1是CI;2是NCI 输入
snr SNR(单值或矢量,根据输入距离) dB 输出

fig1_21.m

clear all
close all
np = linspace(1,10000,1000);
snrci = pulse_integration(4,94.e9,47,20,290,20e6,7,10,5.01e3,np,1);
snrnci = pulse_integration(4,94.e9,47,20,290,20e6,7,10,5.01e3,np,2);
semilogx(np,snrci,'k',np,snrnci,'k:')
legend('Coherent integration','Non-coherent integration')
grid
xlabel ('Number of integrated pulses');
ylabel ('SNR - dB');

②、仿真

仿真参数见上面源码

一般情况下 SNR 改善相对脉冲积累数

当使用积累时的 SNR 改善

结论:从图中可以看到随着积累脉冲数的增加,雷达信噪比逐渐增大;且当积累脉冲数相等时,相干积累信噪比大于非相干积累信噪比

三、资源自取

雷达基础导论.pdf

目录
相关文章
|
4天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
50 31
|
17天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
基于粒子滤波器的电池剩余使用寿命计算matlab仿真
本研究基于粒子滤波器预测电池剩余使用寿命(RUL),采用MATLAB2022a实现。通过非线性动力学模型模拟电池老化过程,利用粒子滤波器处理非线性和非高斯问题,准确估计电池SOH变化趋势,进而预测RUL。系统仿真结果显示了良好的预测性能。
|
4天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
23天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
3天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
13天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
14天前
|
算法
超市火灾烟雾蔓延及人员疏散的matlab模拟仿真,带GUI界面
本项目基于MATLAB2022A开发,模拟了大型商业建筑中火灾发生后的人员疏散与烟雾扩散情况。算法通过设定引导点指导人员疏散,考虑视野范围、随机运动及多细胞竞争同一格点的情况。人员疏散时,根据是否处于烟雾区调整运动策略和速度,初始疏散采用正态分布启动。烟雾扩散模型基于流体方程,考虑了无风环境下的简化。
|
11天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
19天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。

热门文章

最新文章