机器学习PAI常见问题之self-attention再target-attention如何解决

本文涉及的产品
交互式建模 PAI-DSW,5000CU*H 3个月
简介: PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。

问题一:机器学习PAI上没有easyrec组件?


机器学习PAI上没有easyrec组件?


参考回答:

有啊,dataworks 或者pai designer的url https://easyrec.readthedocs.io/en/latest/quick_start/mc_tutorial_inner.html 阿里集团内看这个


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/593243


问题二:机器学习PAI 那sub_feature_type 要改成IdFeature吗?


机器学习PAI SequenceFeature里面的sub_feature_type 如果是多值特征的tagfeature,

那sub_feature_type 要改成IdFeature吗?


参考回答:

在阿里云机器学习PAI平台中,对于SequenceFeature类型的特征,如果子特征是多值特征且每个子特征是一个类别标签(TagFeature),通常不需要将其sub_feature_type改写为IdFeatureSequenceFeature主要用于处理有序的序列数据,其子特征可以是各种类型,包括TagFeature(类别标签)。

TagFeature表示的是类别特征,可以处理多值标签,每个标签代表一种类别,而在序列中,这些标签组成一个有序的序列。

IdFeature通常用于标识型特征,尤其当特征是连续整数ID时,不过在处理序列特征时,通常关注的是类别标签而非ID值本身。

因此,如果子特征确实是类别标签,保持sub_feature_typeTagFeature通常是正确的选择。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/593244


问题三:机器学习PAI用配置的办法能解决self-attention再target-attention吗?


机器学习PAI用配置的办法能解决self-attention再target-attention吗?


参考回答:

用组件化的方式可以配出来,不过这种复杂度比较高,跑起来可能比较忙,不是很建议,比较慢


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/593245


问题四:请教个机器学习PAI问题,是怎么实现的呢?


请教个机器学习PAI问题,sequence_combiner的multi_head_attention 是怎么实现的呢?


参考回答:

代码都在 EasyRec 仓库里面的,比如这个 attention 实现在这里:https://github.com/alibaba/EasyRec/blob/master/easy_rec/python/layers/multihead_attention.py#L9 


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/593246


问题五:请教个机器学习PAI问题~不同目标的auc计算时,num_thresholds都是固定的同一个是吧?


请教个机器学习PAI问题~不同目标的auc计算时,num_thresholds都是固定的同一个是吧?如果是的话,这里会不会拆开比较好呢?


参考回答:

在阿里云机器学习PAI中,不同目标的AUC(Area Under the Curve)计算时,num_thresholds参数并不一定是固定的同一个数值。num_thresholds 参数用于指定计算AUC时划分正负样本的阈值数量,不同的任务和模型可能会有不同的最优阈值数。

例如,在多标签分类或多任务学习场景下,各个任务的目标函数和评价指标可能不尽相同,因此针对每个目标计算AUC时,可以根据实际情况设置不同的num_thresholds

至于是否需要拆开,主要取决于以下因素:

  1. 任务复杂性:若各任务之间差异较大,或者每个任务的最佳阈值分布范围相差很大,可能需要独立设置num_thresholds以获得更精确的AUC估计。
  2. 计算资源:增加num_thresholds会增大计算量,如果计算资源有限,可能需要权衡每个任务的精度和整体计算时间。
  3. 评估准确性:更多的阈值划分可以使AUC曲线更加平滑,从而更精确地反映模型性能,但如果任务间差异不大,或者任务比较简单,过多的阈值划分可能并无太大意义。

总之,在实际应用中,应当根据具体任务需求和计算资源情况灵活设置num_thresholds,不必拘泥于固定的一个数值。在PAI平台上,你可以为每个目标或任务单独配置相应的评估参数。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/593248

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
15天前
|
机器学习/深度学习 人工智能 算法
机器学习PAI常见问题之升级alink最新版报错如何解决
PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。
|
15天前
|
机器学习/深度学习 分布式计算 算法
机器学习PAI常见问题之跑predict时报错如何解决
PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。
|
15天前
|
机器学习/深度学习 分布式计算 算法
机器学习PAI常见问题之下载了很多版本依赖包导致超时如何解决
PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。
|
15天前
|
机器学习/深度学习 SQL 存储
机器学习PAI常见问题之资源不足如何解决
PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。
|
15天前
|
机器学习/深度学习 存储 分布式计算
机器学习PAI常见问题之DLC的数据写入到另外一个阿里云主账号的OSS中如何解决
PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。
|
15天前
|
机器学习/深度学习 数据采集 人工智能
机器学习PAI常见问题之多worker卡会报错如何解决
PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。
|
15天前
|
机器学习/深度学习 人工智能 分布式计算
机器学习PAI常见问题之配了exporter_type: "final",训练完却没有如何解决
PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。
|
15天前
|
机器学习/深度学习 API Apache
机器学习PAI常见问题之本地运行深度学习训练和预测的测试代码时报错如何解决
PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习PAI常见问题之直接push不上去如何解决
PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。
|
15天前
|
机器学习/深度学习 数据采集 自然语言处理
理解并应用机器学习算法:神经网络深度解析
【5月更文挑战第15天】本文深入解析了神经网络的基本原理和关键组成,包括神经元、层、权重、偏置及损失函数。介绍了神经网络在图像识别、NLP等领域的应用,并涵盖了从数据预处理、选择网络结构到训练与评估的实践流程。理解并掌握这些知识,有助于更好地运用神经网络解决实际问题。随着技术发展,神经网络未来潜力无限。

热门文章

最新文章

相关产品

  • 人工智能平台 PAI