机器学习PAI常见问题之本地运行深度学习训练和预测的测试代码时报错如何解决

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。

问题一:机器学习PAI的alink支持flink1.14.3版本吗?


机器学习PAI的alink支持flink1.14.3版本吗?


参考回答:

机器学习PAI的alink支持flink1.14.3版本。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/593255


问题二:机器学习PAI本地运行深度学习训练和预测的测试代码时报如图错误怎么处理?


机器学习PAI本地运行深度学习训练和预测的测试代码时报如图错误怎么处理?


参考回答:

根据提供的错误信息,可以看出这是一个与Apache Flink相关的错误。具体来说,错误代码为0x086008000001003,表示在执行Elink时出现了错误。

要解决这个问题,可以尝试以下几个步骤:

  1. 检查依赖项:确保你的项目中包含了正确的依赖项,并且版本与Flink的要求相匹配。可以查看官方文档或社区讨论以获取最新的依赖项信息。
  2. 检查配置:检查你的Flink配置文件是否正确设置。确保所有必要的参数和路径都正确配置,并且与你的环境和数据源相匹配。
  3. 调试代码:仔细检查你的代码,特别是涉及到Flink操作的部分。确保你正确地使用了Flink的API和函数,并且没有逻辑错误或语法错误。
  4. 查找解决方案:如果以上步骤都没有解决问题,可以在Flink的官方文档、社区论坛或GitHub仓库中搜索类似的问题和解决方案。其他开发者可能已经遇到了类似的问题,并提供了解决方法。
  5. 寻求帮助:如果你仍然无法解决问题,可以考虑向Flink的开发者或社区成员寻求帮助。你可以在官方邮件列表、Stack Overflow等平台上提问,并提供尽可能详细的错误信息和上下文。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/593256


问题三:机器学习PAI引用akdl三方库的flink-ml-framework,请问该库是否支持微软系统?


机器学习PAI引用akdl三方库的flink-ml-framework,请问该库是否支持微软系统


参考回答:

flink-ml-framework支持微软系统

Apache Flink ML是一个机器学习库,它提供了一套API和基础架构,用于构建易于使用、高性能、低延迟的机器学习算法库。Flink ML旨在支持流处理和批处理统一的机器学习算法开发,并且设计了面向实时机器学习的API和迭代引擎。由于Apache Flink本身是一个开源的流处理框架,它支持在多种平台上运行,包括Windows系统。因此,作为基于Apache Flink的机器学习库,flink-ml-framework也应该能够在微软系统上运行。

此外,为了确保在特定系统上的兼容性,建议查看官方文档或社区讨论,以获取最新的安装和使用指南。同时,也可以考虑联系库的维护者或社区成员,以获取更具体的支持和帮助。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/593257


问题四:机器学习PAI embedding_name 是要共享emb的那个特征名吗?


机器学习PAI embedding_name 是要共享emb的那个特征名吗?


参考回答:

是的


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/593334


问题五:机器学习PAI类别特征emb共享给kv特征这样写有问题吗?


如果我一个类别特征

feature_configs {

input_names: "cate_1"

feature_type: TagFeature

embedding_dim: 4

hash_bucket_size: 90

separator: "|"

combiner: "mean"

embedding_name: "cate_1"

}

feature_configs {

input_names: "kv_1"

feature_type: TagFeature

embedding_dim: 4

hash_bucket_size: 90

separator: "|"

kv_separator: ":"

combiner: "mean"

embedding_name: "cate_1"

}

机器学习PAI类别特征emb共享给kv特征这样写有问题吗?


参考回答:

没有问题


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/593335

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
4月前
|
机器学习/深度学习 算法 定位技术
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现裂缝的检测识别(C#代码UI界面版)
本项目基于YOLOv8模型与C#界面,结合Baumer工业相机,实现裂缝的高效检测识别。支持图像、视频及摄像头输入,具备高精度与实时性,适用于桥梁、路面、隧道等多种工业场景。
538 27
|
6月前
|
机器学习/深度学习 人工智能 供应链
从概念到商业价值:AI、机器学习与深度学习全景指南
在这个科技飞速发展的时代🚀,人工智能正以惊人的速度渗透到我们的生活和工作中👀。但面对铺天盖地的AI术语和概念,很多人感到困惑不已😣。"AI"、"机器学习"、"深度学习"和"神经网络"到底有什么区别?它们如何相互关联?如何利用这些技术提升工作效率和创造价值?
|
2月前
|
机器学习/深度学习 数据采集 编解码
基于深度学习分类的时相关MIMO信道的递归CSI量化(Matlab代码实现)
基于深度学习分类的时相关MIMO信道的递归CSI量化(Matlab代码实现)
159 1
|
2月前
|
机器学习/深度学习 算法 vr&ar
【深度学习】基于最小误差法的胸片分割系统(Matlab代码实现)
【深度学习】基于最小误差法的胸片分割系统(Matlab代码实现)
|
10月前
|
机器学习/深度学习 存储 人工智能
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
MNN 是阿里巴巴开源的轻量级深度学习推理框架,支持多种设备和主流模型格式,具备高性能和易用性,适用于移动端、服务器和嵌入式设备。
2402 18
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
|
11月前
|
机器学习/深度学习 人工智能 算法
探索机器学习:从线性回归到深度学习
本文将带领读者从基础的线性回归模型开始,逐步深入到复杂的深度学习网络。我们将通过代码示例,展示如何实现这些算法,并解释其背后的数学原理。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和知识。让我们一起踏上这段激动人心的旅程吧!
211 3
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法。本文介绍 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,同时提供 Python 实现示例,强调其在确保项目性能和用户体验方面的关键作用。
421 6
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
542 3
|
11月前
|
机器学习/深度学习 人工智能 算法
机器学习与深度学习:差异解析
机器学习与深度学习作为两大核心技术,各自拥有独特的魅力和应用价值。尽管它们紧密相连,但两者之间存在着显著的区别。本文将从定义、技术、数据需求、应用领域、模型复杂度以及计算资源等多个维度,对机器学习与深度学习进行深入对比,帮助您更好地理解它们之间的差异。

热门文章

最新文章

相关产品

  • 人工智能平台 PAI