数据分析-pandas(一)

简介: pandas是Python的一个第三方开源库,是Python数据分析的必备高级工具,Pandas 这个名字来源于面板数据(Panel Data)与数据分析(data analysis)这两个名词的组合。在经济学中,Panel Data 是一个关于多维数据集的术语。Pandas 最初被应用于金融量化交易领域,现在它的应用领域更加广泛,涵盖了农业、工业、交通等许多行业。

 一,pandas简介:

       pandas是Python的一个第三方开源库,是Python数据分析的必备高级工具,Pandas 这个名字来源于面板数据(Panel Data)与数据分析(data analysis)这两个名词的组合。在经济学中,Panel Data 是一个关于多维数据集的术语。Pandas 最初被应用于金融量化交易领域,现在它的应用领域更加广泛,涵盖了农业、工业、交通等许多行业。

二,pandas数据结构Series简介:

Series是一个一维标记数组,能够保存任何数据类型(整数,字符串,浮点数,Python对象等)。创建它的基本方法是调用Series

首先我们先导入pandas

import numpy as np
import pandas as pd
s = pd.Series(data, index=index)

image.gif

这里data可以有很多不同的东西:

       python字典

       一个ndarray

       标量值(如 5)

传递的索引是轴标签的列表,因此根据数据是什么,分为几种情况:

2.1 data为ndarray

如果 data 是 ndarray,则索引必须与数据长度相同。如果没有传递索引,则会创建一个具有 value 的索引。[0,..,len(data)-1]

这里我们先给出index

s = pd.Series(np.random.randn(5), index=["a", "b", "c", "d", "e"])

image.gif

a    0.469112
b   -0.282863
c   -1.509059
d   -1.135632
e    1.212112
dtype: float64

image.gif

s.index

image.gif

Index(['a', 'b', 'c', 'd', 'e'], dtype='object')

image.gif

下面我们不给index

pd.Series(np.random.randn(5))

image.gif

0   -0.173215
1    0.119209
2   -1.044236
3   -0.861849
4   -2.104569
dtype: float64

image.gif

可以看到Python自动生成了一个索引

2.2 data为字典

Series可以从字典实例化:

d = {"b": 1, "a": 0, "c": 2}

image.gif

b    1
a    0
c    2
dtype: int64

image.gif

如果传递了索引,则将拉出索引中标签对应的数据中的值

d = {"a": 0.0, "b": 1.0, "c": 2.0}
pd.Series(d)
pd.Series(d, index=["b", "c", "d", "a"])

image.gif

a    0.0
b    1.0
c    2.0
dtype: float64
b    1.0
c    2.0
d    NaN
a    0.0
dtype: float64

image.gif

注意:NaN不是数字是pandas中使用的标准缺失数据标记

三,Serise切片操作:

Series与ndarray非常相似,并且是大多数Numpy函数的有效参数,Series也能对索引进行切片操作。

s[0]

image.gif

0.4691122999071863

image.gif

s[:3]

image.gif

a    0.469112
b   -0.282863
c   -1.509059
dtype: float64

image.gif

s[s > s.median()]

image.gif

a    0.469112
e    1.212112
dtype: float64

image.gif

s[[4, 3, 1]]

image.gif

e    1.212112
d   -1.135632
b   -0.282863
dtype: float64

image.gif

四,Series性质:

4.1 Series类似于numpy,字典

与numpy数组一样,pandas的Series也有一个dtype

s.dtype

image.gif

dtype('float64')

image.gif

这通常是NumPy dtype。然而,pandas和第3方库在几个地方扩展了NumPy的类型系统,在这种情况下,dtype将是ExtensionDtype.pandas中的一些示例是分类数据和可为空整数数据类型。

Series也类似于固定大小的字典,可以通过索引标签获取和设置值:

s["a"]
s["e"] = 12.0
"e" in s
"f" in s

image.gif

0.4691122999071863
a     0.469112
b    -0.282863
c    -1.509059
d    -1.135632
e    12.000000
dtype: float64
True
False

image.gif

如果索引中不包含标签则会引发异常。

使用Series.get()方法,丢失的标签将返回None或指定的默认值:

s.get("f", np.nan)

image.gif

nan

image.gif

4.2 矢量化操作和标签对齐系列:

使用原始Numpy数组时间,通常不需要逐值循环,在panda中使用Series时间也是如此,Series可以传递到大多数需要ndarray的Numpy方法中

s + s
s * 2
np.exp(s)

image.gif

a     0.938225
b    -0.565727
c    -3.018117
d    -2.271265
e    24.000000
dtype: float64
a     0.938225
b    -0.565727
c    -3.018117
d    -2.271265
e    24.000000
dtype: float64
a         1.598575
b         0.753623
c         0.221118
d         0.321219
e    162754.791419
dtype: float64

image.gif

Series和ndarray之间的一个关键区别是,Series会根据标签自动对齐数据,因此,在编写计算时无需烤炉Series的标签是否相同。

s[1:] + s[:-1]

image.gif

a         NaN
b   -0.565727
c   -3.018117
d   -2.271265
e         NaN
dtype: float64

image.gif

未对齐之间的运算结果Series将包含所涉及索引的并集。Series如果在其中一个或另一个中找不到标签,结果将被标记为丢失NaN。能够在不进行任何显式数据对齐的情况下编写代码,为交互式数据分析和研究提供了巨大的自由度和灵活性。pandas数据结构的集成数据对齐功能使pandas与大多数处理标记数据的相关工具区分开来。

注意:一般来说,我们选择使不同索引对象之间的操作的默认结果产生索引的并集,以避免信息丢失。尽管缺少数据,但拥有索引标签通常是计算过程中的重要信息。您当然可以选择通过dropna函数删除丢失数据的标签。

4.3 name属性:

Series还有一个name属性:

s = pd.Series(np.random.randn(5), name="something")
s.name

image.gif

0   -0.494929
1    1.071804
2    0.721555
3   -0.706771
4   -1.039575
Name: something, dtype: float64
'something'

image.gif

另外还能又pandas.Series.rename()来重命名

s2 = s.rename("different")
s2.name

image.gif

'different'

image.gif

4.4,基本属性

属性 用途
s.shape 查看数据行列
s.ndim 查看维度,Series 是一维,ndim 恒等于1
s.size 查看数据总数
s.index 查看索引
s.values 查看数据值
s.name 查看 Series 对象的 name,若未设定则为空

(1)

s = pd.Series(np.random.randint(1,10,size=(10,)))

s.head() # 默认是前五行数据,可自定义行数,比如想要十行的话,s.head(10)

(2)isnull(),notnull()函数检测缺失数据

 一,pandas简介:

       pandas是Python的一个第三方开源库,是Python数据分析的必备高级工具,Pandas 这个名字来源于面板数据(Panel Data)与数据分析(data analysis)这两个名词的组合。在经济学中,Panel Data 是一个关于多维数据集的术语。Pandas 最初被应用于金融量化交易领域,现在它的应用领域更加广泛,涵盖了农业、工业、交通等许多行业。

二,pandas数据结构Series简介:

Series是一个一维标记数组,能够保存任何数据类型(整数,字符串,浮点数,Python对象等)。创建它的基本方法是调用Series

首先我们先导入pandas

import numpy as np
import pandas as pd
s = pd.Series(data, index=index)

image.gif

这里data可以有很多不同的东西:

       python字典

       一个ndarray

       标量值(如 5)

传递的索引是轴标签的列表,因此根据数据是什么,分为几种情况:

2.1 data为ndarray

如果 data 是 ndarray,则索引必须与数据长度相同。如果没有传递索引,则会创建一个具有 value 的索引。[0,..,len(data)-1]

这里我们先给出index

s = pd.Series(np.random.randn(5), index=["a", "b", "c", "d", "e"])

image.gif

a    0.469112
b   -0.282863
c   -1.509059
d   -1.135632
e    1.212112
dtype: float64

image.gif

s.index

image.gif

Index(['a', 'b', 'c', 'd', 'e'], dtype='object')

image.gif

下面我们不给index

pd.Series(np.random.randn(5))

image.gif

0   -0.173215
1    0.119209
2   -1.044236
3   -0.861849
4   -2.104569
dtype: float64

image.gif

可以看到Python自动生成了一个索引

2.2 data为字典

Series可以从字典实例化:

d = {"b": 1, "a": 0, "c": 2}

image.gif

b    1
a    0
c    2
dtype: int64

image.gif

如果传递了索引,则将拉出索引中标签对应的数据中的值

d = {"a": 0.0, "b": 1.0, "c": 2.0}
pd.Series(d)
pd.Series(d, index=["b", "c", "d", "a"])

image.gif

a    0.0
b    1.0
c    2.0
dtype: float64
b    1.0
c    2.0
d    NaN
a    0.0
dtype: float64

image.gif

注意:NaN不是数字是pandas中使用的标准缺失数据标记

三,Serise切片操作:

Series与ndarray非常相似,并且是大多数Numpy函数的有效参数,Series也能对索引进行切片操作。

s[0]

image.gif

0.4691122999071863

image.gif

s[:3]

image.gif

a    0.469112
b   -0.282863
c   -1.509059
dtype: float64

image.gif

s[s > s.median()]

image.gif

a    0.469112
e    1.212112
dtype: float64

image.gif

s[[4, 3, 1]]

image.gif

e    1.212112
d   -1.135632
b   -0.282863
dtype: float64

image.gif

四,Series性质:

4.1 Series类似于numpy,字典

与numpy数组一样,pandas的Series也有一个dtype

s.dtype

image.gif

dtype('float64')

image.gif

这通常是NumPy dtype。然而,pandas和第3方库在几个地方扩展了NumPy的类型系统,在这种情况下,dtype将是ExtensionDtype.pandas中的一些示例是分类数据和可为空整数数据类型。

Series也类似于固定大小的字典,可以通过索引标签获取和设置值:

s["a"]
s["e"] = 12.0
"e" in s
"f" in s

image.gif

0.4691122999071863
a     0.469112
b    -0.282863
c    -1.509059
d    -1.135632
e    12.000000
dtype: float64
True
False

image.gif

如果索引中不包含标签则会引发异常。

使用Series.get()方法,丢失的标签将返回None或指定的默认值:

s.get("f", np.nan)

image.gif

nan

image.gif

4.2 矢量化操作和标签对齐系列:

使用原始Numpy数组时间,通常不需要逐值循环,在panda中使用Series时间也是如此,Series可以传递到大多数需要ndarray的Numpy方法中

s + s
s * 2
np.exp(s)

image.gif

a     0.938225
b    -0.565727
c    -3.018117
d    -2.271265
e    24.000000
dtype: float64
a     0.938225
b    -0.565727
c    -3.018117
d    -2.271265
e    24.000000
dtype: float64
a         1.598575
b         0.753623
c         0.221118
d         0.321219
e    162754.791419
dtype: float64

image.gif

Series和ndarray之间的一个关键区别是,Series会根据标签自动对齐数据,因此,在编写计算时无需烤炉Series的标签是否相同。

s[1:] + s[:-1]

image.gif

a         NaN
b   -0.565727
c   -3.018117
d   -2.271265
e         NaN
dtype: float64

image.gif

未对齐之间的运算结果Series将包含所涉及索引的并集。Series如果在其中一个或另一个中找不到标签,结果将被标记为丢失NaN。能够在不进行任何显式数据对齐的情况下编写代码,为交互式数据分析和研究提供了巨大的自由度和灵活性。pandas数据结构的集成数据对齐功能使pandas与大多数处理标记数据的相关工具区分开来。

注意:一般来说,我们选择使不同索引对象之间的操作的默认结果产生索引的并集,以避免信息丢失。尽管缺少数据,但拥有索引标签通常是计算过程中的重要信息。您当然可以选择通过dropna函数删除丢失数据的标签。

4.3 name属性:

Series还有一个name属性:

s = pd.Series(np.random.randn(5), name="something")
s.name

image.gif

0   -0.494929
1    1.071804
2    0.721555
3   -0.706771
4   -1.039575
Name: something, dtype: float64
'something'

image.gif

另外还能又pandas.Series.rename()来重命名

s2 = s.rename("different")
s2.name

image.gif

'different'

image.gif

4.4,基本属性

属性 用途
s.shape 查看数据行列
s.ndim 查看维度,Series 是一维,ndim 恒等于1
s.size 查看数据总数
s.index 查看索引
s.values 查看数据值
s.name 查看 Series 对象的 name,若未设定则为空

(1)

s = pd.Series(np.random.randint(1,10,size=(10,)))

s.head() # 默认是前五行数据,可自定义行数,比如想要十行的话,s.head(10)

(2)isnull(),notnull()函数检测缺失数据

创建一个测试集

obj = Series([10,4,np.nan])

image.gif

使用notnull查看

notnull = pd.notnull(obj)

image.gif

根据isnull()返回的结果,取不为空的数据

创建一个测试集

obj = Series([10,4,np.nan])

image.gif

使用notnull查看

notnull = pd.notnull(obj)

image.gif

根据isnull()返回的结果,取不为空的数据

相关文章
|
3天前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
92 71
|
2天前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
95 73
|
2月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
80 0
|
4天前
|
数据采集 数据可视化 索引
Pandas数据应用:股票数据分析
本文介绍了如何使用Pandas库进行股票数据分析。首先,通过pip安装并导入Pandas库。接着,从本地CSV文件读取股票数据,并解决常见的解析错误。然后,利用head()、info()等函数查看数据基本信息,进行数据清洗,处理缺失值和重复数据。再者,结合Matplotlib和Seaborn进行数据可视化,绘制收盘价折线图。最后,进行时间序列分析,设置日期索引、重采样和计算移动平均线。通过这些步骤,帮助读者掌握Pandas在股票数据分析中的应用。
31 5
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
50 2
|
2月前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
53 2
|
2月前
|
数据采集 数据可视化 数据挖掘
Python数据分析:Pandas库实战指南
Python数据分析:Pandas库实战指南
|
2月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
2月前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
3月前
|
机器学习/深度学习 数据采集 算法
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
【10月更文挑战第5天】随着数据科学和机器学习领域的快速发展,处理大规模数据集的能力变得至关重要。Python凭借其强大的生态系统,尤其是NumPy、Pandas和SciPy等库的支持,在这个领域占据了重要地位。本文将深入探讨这些库如何帮助科学家和工程师高效地进行数据分析,并通过实际案例来展示它们的一些高级应用。
70 0
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用