数据分析实战-Python实现博客评论数据的情感分析

简介: 数据分析实战-Python实现博客评论数据的情感分析

学习建议

  • 现在很多网站、小程序、应用软件、博客、电商购物平台等,都有很多的用户评论数据,这些数据包含了用户对产品的认知、看法和一些立场;
  • 那么我们可以对这些数据进行情感分析,可以得到一些有价值的信息,帮助我们进一步提升产品价值或用户体验;
  • 本文主要针对某个博客的评论数据进行分析,分析用户的情感变化,包括正面的、负面的情绪变化等;
  • 学习本文建议对Python的SnowNLP第三库有一定的了解,另外对Python的excel数据处理相关库有一些基础认知,比如pandas库、matplotlib库等等。

SnowNLP基础

什么是SnowNLP?

在学习前,我们先了解下什么是SnowNLP?

  • SnowNLP是Python的第三方模块或者库;
  • SnowNLP主要作用是可实现对评论内容的情感预测。

SnowNLP情感分析

  • SnowNLP可友好的处理中文内容,包括中文分词、文本分类、提取文本关键词、文本相似度计算、情感分析等;
  • 而针对情感分析,分析完成后可得到概率,从概率我们可以得出哪些是正面评论,哪些是负面评论;
  • 情感分析中,概率大于0.5视为正面评价(积极情感),概率小于0.5视为负面评价(消极情感)。

SnowNLP使用

在进行实战之前,我们了解一些SnowNLP的简单使用,可对后续我们数据分析有一定的帮助。下边简单举几个例子,帮助大家理解SnowNLP的作用。

SnowNLP安装

直接使用pip安装即可:

pip install snownlp

情感分析

  • 情感分析会对评价的正面和负面评价进行分析,大于0.5为正面,否则为负面;
# -*- coding:utf-8 -*-
# 作者:虫无涯
# 日期:2024/3/12
# 文件名称:test_snlp.py
# 作用:snownlp使用-情感分析

import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "snownlp"])
from snownlp import SnowNLP

text = "我篇文章内容丰富、条理清晰,让我学到了很多~~~"
s = SnowNLP(text)
# 情感分析
sentiment = s.sentiments
if sentiment > 0.5:
    print('正面评价')
else:
    print('负面评价')

# 输出为:正面评价

中文分词

  • 中文分析主要是对一句话进行分解,把整个语句分割成单个词语和汉字;
# -*- coding:utf-8 -*-
# 作者:虫无涯
# 日期:2024/3/12
# 文件名称:test_snlp.py
# 作用:snownlp使用-中文分词

import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "snownlp"])
from snownlp import SnowNLP

data = "如果我有一个亿,我会不会飘?"
s = SnowNLP(data)
print(s.words)

# 输出:
# ['如果', '我', '有', '一个', '亿', ',', '我', '会', '不', '会', '飘', '?']

关键词提取

  • 可以设置需要提取的关键词个数,然后输出对应的药提取的关键词;
# -*- coding:utf-8 -*-
# 作者:虫无涯
# 日期:2024/3/12
# 文件名称:test_snlp.py
# 作用:snownlp使用-关键词提取

import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "snownlp"])
from snownlp import SnowNLP

text = "这是一篇关于Python数据处理的博客文章,主要介绍Python中SnowNLP库的使用方法以及实战。"
s = SnowNLP(text)
keywords = s.keywords(3)  # 提取前3个关键词
print('关键词:', keywords)

# 输出为:关键词: ['Python', '库', 'SnowNLP']

拼音、词性标准

  • 这个就不多介绍了,详细可以去看看SnowNLP的使用。

SnowNLP实战-博客评论数据的情感分析

数据准备

  • 我们需要提供一组博客评论数据,然后进行分析;
  • 数据建议可以放入excel中,方便分析,本文为了代码运行方面,后续会放置在变量中;
  • 数据如下:
类别 博客名称 时间 评价内容
实用性 Python字典和元组 2024/1/8 20:16 文章内容充实,对实际项目使用有很好的帮助
易学性 一篇文章看懂Python从0到放弃 2024/1/9 8:13 内容通俗易懂,可以快速入门Python的学习
完整性 Python画图 2024/2/3 12:20 内容过于简单,不太完整,有点缺少重要内容,建议补充
实用性 我的Python学习成长记 2023/11/12 23:12 大佬这篇博文对我很有启发,感谢分享
易学性 Python画图 2023/11/13 20:12 内容不太能理解,没学会,哈哈
完整性 一篇文章看懂Python从0到放弃 2023/12/30 20:15 内容很多,也很全,学习了
易学性 我的Python学习成长记 2023/12/20 21:15 可能我基础薄弱,感觉看不懂啊
易学性 如何在职场中呼风唤雨? 2023/12/19 13:13 标题党,一看就是水文
完整性 如何在职场中呼风唤雨? 2023/12/21 15:15 内容过于浮夸,不够完整,建议从实际中多讲讲
实用性 一篇文章看懂Python从0到放弃 2023/12/17 18:18 比较比较实用,学习了
完整性 我的Python学习成长记 2023/12/24 5:37 内容充实完整,值得推荐给小伙伴
实用性 Python画图 2023/12/11 3:16 实用性还不错
易学性 Python+selenium如何实现自动化测试? 2023/12/9 16:48 内容不错,容易上手,感谢分享
完整性 Python+selenium如何实现自动化测试? 2023/12/8 11:33 内我很全啊,支持大佬

数据获取

  • 有两种方式,第一种是把以上数据存入data.xls文件中,然后使用pandas读取即可,比如:

data = 'data.xls'
df = pd.read_excel(data ) # 读取文本数据
df1=df.iloc[:,3] # 提取所有数据
print(type(df1))
values=[SnowNLP(i).sentiments for i in df1] # 遍历每条评论进行预测

  • 第二种方式是,我们直接把需要的数据放入变量,便于后续直接运行代码,如下:
data = ["文章内容充实,对实际项目使用有很好的帮助",
        "内容通俗易懂,可以快速入门Python的学习",
        "内容过于简单,不太完整,有点缺少重要内容,建议补充",
        "大佬这篇博文对我很有启发,感谢分享",
        "内容不太能理解,没学会,哈哈",
        "内容很多,也很全,学习了",
        "可能我基础薄弱,感觉看不懂啊",
        "标题党,一看就是水文",
        "内容过于浮夸,不够完整,建议从实际中多讲讲",
        "比较比较实用,学习了",
        "内容充实完整,值得推荐给小伙伴",
        "实用性还不错",
        "内容不错,容易上手,感谢分享",
        "内我很全啊,支持大佬",
        ]
print(data)

数据分析

大致过程分如下几个步骤:

  • 导入需要的模块或者库;
  • 将需要的数据存入列表;
  • 循环遍历所有数据;
  • 输出积极和消极情绪的概率;
  • 计算概率并根据结果生成图标的横纵坐标;
  • 结果显示。
# -*- coding:utf-8 -*-
# 作者:虫无涯
# 日期:2024/3/12 
# 文件名称:test_snlp.py
# 作用:Python实现博客评论数据的情感分析

import subprocess
import sys
subprocess.check_call([sys.executable, "-m", "pip", "install", "snownlp"])
subprocess.check_call([sys.executable, "-m", "pip", "install", "matplotlib"])
from snownlp import SnowNLP
import matplotlib.pyplot as plt


data = ["文章内容充实,对实际项目使用有很好的帮助",
        "内容通俗易懂,可以快速入门Python的学习",
        "内容过于简单,不太完整,有点缺少重要内容,建议补充",
        "大佬这篇博文对我很有启发,感谢分享",
        "内容不太能理解,没学会,哈哈",
        "内容很多,也很全,学习了",
        "可能我基础薄弱,感觉看不懂啊",
        "标题党,一看就是水文",
        "内容过于浮夸,不够完整,建议从实际中多讲讲",
        "比较比较实用,学习了",
        "内容充实完整,值得推荐给小伙伴",
        "实用性还不错",
        "内容不错,容易上手,感谢分享",
        "内我很全啊,支持大佬",
        ]

# 遍历数据并进行预测
values = [SnowNLP(i).sentiments for i in data] 
print(values)
# 输出积极的概率,大于0.5积极的,小于0.5消极的

# 保存预测值
text = []
positive = 0
negative = 0
for i in values:
   if(i>=0.5):
       text.append("正面")
       positive = positive + 1
   else:
       text.append("负面")
       negative = negative + 1

# 计算好评率
rate = positive / (positive + negative)
print('好评率为:','%.f%%' % (rate * 100)) # 格式化为百分比

# 图例的横纵坐标
y = values
plt.rc('font', family='SimHei', size=10)
plt.plot(y, marker='o', mec='r', mfc='w', label=u'博客评分')
plt.xlabel('粉丝')
plt.ylabel('博客评分')

# 结果显示
plt.legend()  # 让图例生效
plt.title('博客评论情感分析', family='SimHei', size=14, color='red')
plt.savefig('plot.jpg')
  • 显示效果如下:

请在此添加图片描述

总结

Python实现博客评论数据的情感分析实际是使用了SnowNLP库的功能,SnowNLP不仅可以对评论数据进行情感分析,还能进行文本分类、中文分词、词性标注、提取关键词、文本相似度计算等操作。这样做数据分析其实为了帮助我们更好的了解我们的目标客户对于产品的使用反馈,可以很好帮助我们进一步提升产品质量。

目录
相关文章
|
6天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从基础到实战
【10月更文挑战第36天】本文将带你走进Python的世界,从基础语法出发,逐步深入到实际项目应用。我们将一起探索Python的简洁与强大,通过实例学习如何运用Python解决问题。无论你是编程新手还是希望扩展技能的老手,这篇文章都将为你提供有价值的指导和灵感。让我们一起开启Python编程之旅,用代码书写想法,创造可能。
|
9天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
26 4
|
7天前
|
机器学习/深度学习 数据可视化 数据处理
Python数据科学:从基础到实战
Python数据科学:从基础到实战
14 1
|
8天前
|
机器学习/深度学习 JSON API
Python编程实战:构建一个简单的天气预报应用
Python编程实战:构建一个简单的天气预报应用
20 1
|
9天前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
19 1
|
4天前
|
数据采集 存储 数据处理
探索Python中的异步编程:从基础到实战
【10月更文挑战第39天】在编程世界中,时间就是效率的代名词。Python的异步编程特性,如同给程序穿上了一双翅膀,让它们在执行任务时飞得更高、更快。本文将带你领略Python异步编程的魅力,从理解其背后的原理到掌握实际应用的技巧,我们不仅会讨论理论基础,还会通过实际代码示例,展示如何利用这些知识来提升你的程序性能。准备好让你的Python代码“起飞”了吗?让我们开始这场异步编程的旅程!
12 0
|
7天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
Python
PYTHON实战两数之和
1. 两数之和 难度:简单 收藏 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。 你可以按任意顺序返回答案。
188 0
PYTHON实战两数之和
|
4天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
4天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!