DoRA(权重分解低秩适应):一种新颖的模型微调方法_dora模型

简介: DoRA(权重分解低秩适应):一种新颖的模型微调方法_dora模型

来自:小互

DoRA(权重分解低秩适应):一种新颖的模型微调方法

DoRA在LoRA的基础上进一步发展,通过将预训练权重分解为“幅度”和“方向”两个部分进行微调。

这种权重分解方法允许DoRA更精细地控制模型的学习过程,分别针对权重的大小和方向进行优化。

相比LoRA,它提供了一种更精细、更全面的微调策略。

模型微调的挑战

当我们有一个已经训练好的AI模型时,如果想让它适应一些新的任务,我们通常会进行所谓的“微调”,即对模型进行一些小的调整。这就像是给模型上一堂速成课,让它快速学习新技能。但问题是,随着模型变得越来越大,这种“速成课”的成本也越来越高,不仅需要大量的计算资源,还可能使模型变得笨重,影响其运行速度。

DoRA(权重分解低秩适应)和LoRA(低秩适应)都是针对预训练模型进行微调的方法,旨在提高模型针对特定任务的性能,同时尽量减少计算成本和资源需求。尽管两者都旨在实现参数高效的微调,但它们在方法和优势上有所不同。

LoRA的基本原理:

LoRA通过在模型的权重更新中引入低秩矩阵,来实现对模型的高效微调。具体来说,它通过使用两个较小的矩阵的乘积来近似权重的更新,从而减少了需要训练的参数数量。这种方法不改变原始模型的架构,因此不会增加额外的推理负担。

DoRA的创新之处:

DoRA在LoRA的基础上进一步发展,通过将预训练权重分解为“幅度”和“方向”两个部分进行微调。这种权重分解方法允许DoRA更精细地控制模型的学习过程,分别针对权重的大小和方向进行优化。在调整方向部分时,DoRA利用了LoRA的策略,通过低秩适应来有效地更新方向,而幅度部分则单独进行调整。

通俗解释就是:DoRA通过一种聪明的方法来解决这个问题。它将模型的“知识”(即模型中的权重)分解成两个部分:一部分负责“方向”(即模型应该如何调整其判断),另一部分负责“幅度”(即这种调整有多大)。通过这种分解,DoRA可以更精细地调整模型,就像是给模型提供了一个更加个性化的“速成课”。

低秩适应的聪明之处

在调整“方向”部分时,DoRA使用了一种名为LoRA的技术,这种技术只需调整很少量的数据就能实现有效的微调。这就好比是在教模型新技能时,只需给模型一些关键的提示而不是让它重新学习一遍所有的内容。

DoRA相对于LoRA的优势:

  • 1、更细致的控制:通过分别针对权重的幅度和方向进行调整,DoRA提供了对模型微调过程更细致的控制,从而能够更准确地适应特定的任务需求。
  • 2、增强的学习能力:DoRA的权重分解策略增强了模型在微调过程中的学习能力,使其在多种下游任务上的性能更接近于全参数微调的方法。
  • 3、保持高效性:尽管DoRA在微调策略上进行了创新,但它仍然保持了LoRA的高效性,避免增加额外的推理负担。
  • 4、提高训练稳定性:DoRA通过分解权重并专门针对方向使用低秩适应,提高了训练过程的稳定性,有助于避免过拟合和其他训练问题。

举例解释DoRA和LoRA的区别:

要理解DoRA在LoRA基础上的进一步发展和其权重分解方法,我们可以用一个简化的类比来帮助说明:

想象你有一辆车(代表预训练的AI模型),现在你的目标是让这辆车能够在一个新的赛道上(特定任务)尽可能好地运行。为了达到这个目标,你需要对车进行调整。在这个例子中,车的“方向”代表模型做决策的方向或方式,而“幅度”则代表这些决策的强度或信心。

LoRA的方法:

如果仅使用LoRA,这就像是你只能调整方向盘的灵敏度(方向),来使车更好地适应赛道。这种方法有效,但可能不足以让车在所有情况下都表现最佳,因为你没有考虑到其他因素,比如加速的力度。

DoRA的创新:

在DoRA中,你不仅调整方向盘的灵敏度,还可以调整油门的敏感度(幅度)。这样,你就可以更细致地控制车的行驶,既能确保它沿着正确的路径前进,又能控制它的速度,以应对不同的路况。

  • 方向调整:通过LoRA进行低秩适应,相当于调整方向盘的灵敏度,让AI模型在做出决策时能更精确地指向正确的方向。
  • 幅度调整:独立进行的幅度调整,就像是根据赛道的不同部分调整油门的敏感度,让模型对它的决策有适当的信心。

通过这种方法,DoRA能够更全面地对模型进行微调,既考虑到了决策的方向,又优化了这些决策的强度。这使得DoRA在特定任务上的性能更接近于全参数微调方法,而且相比LoRA,它提供了一种更精细、更全面的微调策略。简而言之,DoRA通过在LoRA的基础上增加幅度的调整,使模型的微调更加细致和有效。

目录
打赏
0
0
0
0
76
分享
相关文章
新颖训练方法——用迭代投影算法训练神经网络
本文介绍了一种利用迭代投影算法对神经网络进行训练的方法,首先介绍了交替投影的基础知识,说明投影方法是寻找非凸优化问题解决方案的一种有效方法;之后介绍了差异图的基础知识,将差异图与一些其他算法相结合使得差分映射算法能够收敛于一个好的解决方案;当投影的情况变多时,介绍了分治算法,最后将迭代投影算法应用到神经网络训练中,给出的例子实验结果表明效果不错。
1619 0
神经网络中的量化与蒸馏
本文将深入研究深度学习中精简模型的技术:量化和蒸馏
157 0
PiSSA :将模型原始权重进行奇异值分解的一种新的微调方法
我们开始看4月的新论文了,这是来自北京大学人工智能研究所、北京大学智能科学与技术学院的研究人员发布的Principal Singular Values and Singular Vectors Adaptation(PiSSA)方法。
150 3
神经网络量化基础(1)——模型的构建与基础量化函数的实现(下)
神经网络量化基础 神经网络量化基础(1)——模型的构建与基础量化函数的实现 神经网络量化基础(2)——量化模型的实现
406 0
神经网络量化基础(1)——模型的构建与基础量化函数的实现(下)
神经网络量化基础(1)——模型的构建与基础量化函数的实现(上)
神经网络量化基础 神经网络量化基础(1)——模型的构建与基础量化函数的实现 神经网络量化基础(2)——量化模型的实现
271 0
基于贝叶斯优化卷积神经网络结合长短记忆CNN-LSTM混合神经网络实现数据回归预测附Matlab代码
基于贝叶斯优化卷积神经网络结合长短记忆CNN-LSTM混合神经网络实现数据回归预测附Matlab代码
【Pytorch神经网络理论篇】 24 神经网络中散度的应用:F散度+f-GAN的实现+互信息神经估计+GAN模型训练技巧
MINE方法中主要使用了两种技术:互信息转为神经网络模型技术和使用对偶KL散度计算损失技术。最有价值的是这两种技术的思想,利用互信息转为神经网络模型技术,可应用到更多的提示结构中,同时损失函数也可以根据具体的任务而使用不同的分布度量算法。
625 0

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等