人工智能项目的python版本管理工具DVC

简介: dvc即data version control, 是一种针对人工智能项目(机器学习或者深度学习)的数据版本管理工具。DVC的操作和GIT类似,可以认为为GIT的二次开发封装。结合GIT,DVC可以有效的管理人工智能项目的整个流程,包括代码,数据,训练配置,模型【2月更文挑战第12天】

人工智能项目的python版本管理工具DVC

1. 人工智能项目的版本管理

对于传统的软件工程项目(比如java, web), git是一个非常不错的代码版本管理工具。但是人工智能项目,如机器学习或者深度学习,和传统软件工程项目有一定的差别

  • 代码和文件:人工智能项目除了代码以外,还要大量的训练数据,还有文件比较大的模型文件
  • 开发过程:人工智能项目开发过程,存在一定的不确定性,是一个探索调优的过程。需要很多的组合调参(不同的参数,不同的数据等),然后分别做评估,挑选最好的模型。这是一个相对复杂的过程,要匹配参数,数据,代码,模型。

如上所述,这些差别,git存在一定不足

  • git建议的单个文件在50M,并不擅长管理操作大的文件,如几十G的文件
  • git因为大数据上管理的不足,就无法管理与之相互关联的一连串的迭代变化

是时候祭出DVC, data version control,数据版本管理工具。

2. 什么是DVC

dvc即data version control, 是一种针对人工智能项目(机器学习或者深度学习)的数据版本管理工具。DVC的操作和GIT类似,可以认为为GIT的二次开发封装。结合GIT,DVC可以有效的管理人工智能项目的整个流程,包括代码,数据,训练配置,模型。

GIT和DVC分工如下:

  • dvc:负责数据和模型等大文件的存储、下载等管理,同时生成元数据(.dvc文件)描述这些数据和模型, 并且串联整个人工智能项目工作流
  • git:负责代码和dvc生成的元数据文件的版本管理

3. DVC操作

3.1.安装

pip install dvc

3.2.数据版本管理

3.2.1 初始化

# 到git目录下
git config --global user.name "xxxx"
git config --global user.email "xxxx@wedo.com"
git clone ssh://git@101.81.238.21/test/test.git
cd test/

# dvc 初始化
dvc init
# 将dvc 初始化的文件提交 git
git commit -m "Initialize DVC"

# 初始化后会在项目目录下生成.dvc文件夹,存储dvc相关的信息
.dvc
├── config
├── plots
│   ├── confusion.json
│   ├── default.json
│   ├── scatter.json
│   └── smooth.json
└── tmp
    └── index

3.2.2 添加数据

可以通过dvc add/git add将数据和模型添加到版本管理中

# 假设数据在arch_train/model_zoo/nsfw_online_err.zip
dvc add arch_train/model_zoo/nsfw_online_err.zip
git add arch_train/model_zoo/.gitignore arch_train/model_zoo/nsfw_online_err.zip.dvc


# .dvc 后缀为数据的元数据文件,默认为存储路径为.dvc/cache下
cat arch_train/model_zoo/nsfw_online_err.zip.dvc
outs:
- md5: 26eb560df48bf11ddf303135749b0c60
  path: nsfw_online_err.zip

.
├── cache
│   └── 26
│       └── eb560df48bf11ddf303135749b0c60

3.2.3 版本切换管理

可以配合git的分支管理,来获取分支下不同的数据和模型。

# 切换分支
git checkout 分支名

# dvc通过git中的.dvc 文件,切换这个分支下数据
dvc checkout

3.2.3 共享代码(push/pull)

当多人开发时,dvc push会根据config中的远程主机配置,将数据push到远程主机。远程主机可以是ssh,http还有云盘存储等。

# 建立 远程服务 ssh或者http
# 这里以本地的其他目录为例子
mkdir -p /tmp/dvc-storage
dvc remote add -d myremote /tmp/dvc-storage
git commit .dvc/config -m "Configure local remote"
# 新建后 就会在`.dvc/config`存储远程主机访问的方式
vim config 
[core]
    remote = myremote
['remote "myremote"']
    url = /tmp/dvc-storage

# dvc push 上传数据
dvc push

# 远程主机中数据是上传的一个备份
tree /tmp/dvc-storage/
/tmp/dvc-storage/
└── 26
    └── eb560df48bf11ddf303135749b0c60

1 directory, 1 file
ls -l  /tmp/dvc-storage/26
total 93400
-r--r--r-- 1 root root 95640298 Sep  4 13:44 eb560df48bf11ddf303135749b0c60
ls -lh  /tmp/dvc-storage/26
total 92M
-r--r--r-- 1 root root 92M Sep  4 13:44 eb560df48bf11ddf303135749b0c60

如果数据变更,同样dvc+git进行版本管理

# 数据变化
dvc add arch_train/model_zoo/nsfw_online_err.zip
git commit arch_train/model_zoo/.gitignore arch_train/model_zoo/nsfw_online_err.zip.dvc -m "Dataset updates"
dvc push

当其他人想使用共享代码和数据时 git clone + dvc pull

# 下载代码和数据.dvc
git clone ssh://git@101.81.238.21/test/test.git
cd test/

# 根据.dvc和config远程主机配置,下载对应的数据和模型
dvc pull

3.3 串联工作流

3.2中已经介绍了dvc的最常用的操作,可以看出操作和git的操作基本上吻合的,原理上可以和git对等。
可以通过dvc run来建立训练和评估过程的依赖关系,即将输入的数据,预训练的模型,配置和输出的模型和训练脚本关联起来,可以很方面追溯执行过程, 每次关联dvc都会生成一个yaml配置来描述这个关联性。
dvc run的主要参数

  • -n 操作的名称
  • -p 配置,可以是多个,文件或者文件夹
  • -d 操作依赖的数据,脚本和模型等,可以是多个,文件或者文件夹
  • -o 操作的输出,可以是多个,文件或者文件夹
  • command: 执行操作的命令如python -u train.py
dvc run -n prepare \
          -p prepare.seed,prepare.split \
          -d src/prepare.py -d data/data.xml \
          -o data/prepared \
          python src/prepare.py data/data.xml

4. 总结

dvc把数据、模型、算法脚本和Metrics当成一次代码checkout,配合git就可以很方面的管理每一次训练的所有环节,还可以通过dvc metrics show -T来比较不同版本的模型性能。更多详细的dvc功能参见https://dvc.org/doc/start;欢迎交流讨论。
总结如下

  • dvc add/push/pull 管理数据
  • dvc run 管理工作流串联
  • 建议一个模型迭代一个分支,该分支囊括代码,数据,模型,配置, 模型评估; 可以完美迭代模型优化,而处乱不惊。
目录
相关文章
|
11天前
|
机器学习/深度学习 人工智能 算法
|
23天前
|
前端开发 JavaScript 数据管理
描述一个使用Python开发Web应用程序的实际项目经验,包括所使用的框架和技术栈。
使用Flask开发Web应用,结合SQLite、Flask-SQLAlchemy进行数据管理,HTML/CSS/JS(Bootstrap和jQuery)构建前端。通过Flask路由处理用户请求,模块化代码提高可维护性。unittest进行测试,开发阶段用内置服务器,生产环境可选WSGI服务器或容器化部署。实现了用户注册登录和数据管理功能,展示Python Web开发的灵活性和效率。
14 4
|
1月前
|
Linux 数据库连接 数据库
Python如何将项目直接打包为一键整合包
Python如何将项目直接打包为一键整合包
40 0
|
1月前
|
数据采集 存储 数据处理
Python爬虫在Django项目中的数据处理与展示实例
Python爬虫在Django项目中的数据处理与展示实例
|
1月前
|
人工智能 开发工具 git
第一次运行 Python 项目,使用 python-pptx 提取 ppt 中的文字和图片
人工智能时代,最需要学习的编程语言是:python 。笔者是个 python 小白,昨天花了两个小时,第一次成功运行起来 python 项目 。 项目是 powerpoint-extractor ,可以将 ppt 文件中的图片提取出来,并输出到固定的目录。
第一次运行 Python 项目,使用 python-pptx 提取 ppt 中的文字和图片
|
1月前
|
机器学习/深度学习 数据采集 人工智能
从零开始:如何用Python建立你的第一个人工智能模型
从零开始:如何用Python建立你的第一个人工智能模型
63 1
|
2月前
|
Web App开发 人工智能 Kubernetes
Python 潮流周刊#23:35 个容易上手的 Python 小项目
Python 潮流周刊#23:35 个容易上手的 Python 小项目
20 1
|
机器学习/深度学习 存储 人工智能
干货 | Python人工智能在贪吃蛇游戏中的应用探索(上)(三)
干货 | Python人工智能在贪吃蛇游戏中的应用探索(上)(三)
777 0
干货 | Python人工智能在贪吃蛇游戏中的应用探索(上)(三)
|
机器学习/深度学习 人工智能 TensorFlow
干货 | Python人工智能在贪吃蛇游戏中的应用探索(上)(二)
干货 | Python人工智能在贪吃蛇游戏中的应用探索(上)(二)
354 0
干货 | Python人工智能在贪吃蛇游戏中的应用探索(上)(二)
|
机器学习/深度学习 人工智能 算法
干货 | Python人工智能在贪吃蛇游戏中的应用探索(上)(一)
干货 | Python人工智能在贪吃蛇游戏中的应用探索(上)
483 0
干货 | Python人工智能在贪吃蛇游戏中的应用探索(上)(一)

热门文章

最新文章