Airflow【部署 01】Airflow官网Quick Start实操(一篇学会部署Airflow)

简介: 【2月更文挑战第7天】Airflow【部署 01】Airflow官网Quick Start实操(一篇学会部署Airflow)

来自官网的介绍:https://airflow.apache.org/ Airflow™是一个由社区创建的平台,以编程方式编写,调度和监控工作流。这个快速入门指南将帮助您在本地机器上引导一个独立的Airflow实例。如果您按照下面的说明安装,Airflow的安装是很简单的。使用约束文件来实现可重复的安装,因此建议使用pip和约束文件。

1.环境变量设置

Airflow需要一个主目录,默认使用~/airflow,但如果您喜欢,可以设置一个不同的位置。AIRFLOW_HOME环境变量用于通知Airflow所需的位置。设置环境变量的这一步应该在安装Airflow之前完成,以便安装过程知道在哪里存储必要的文件。

export AIRFLOW_HOME=~/airflow

2.使用约束文件进行安装

官网给出的文件内容:

AIRFLOW_VERSION=2.7.2

# Extract the version of Python you have installed. If you're currently using a Python version that is not supported by Airflow, you may want to set this manually.
# See above for supported versions.
PYTHON_VERSION="$(python --version | cut -d " " -f 2 | cut -d "." -f 1-2)"

CONSTRAINT_URL="https://raw.githubusercontent.com/apache/airflow/constraints-${AIRFLOW_VERSION}/constraints-${PYTHON_VERSION}.txt"
# For example this would install 2.7.2 with python 3.8: https://raw.githubusercontent.com/apache/airflow/constraints-2.7.2/constraints-3.8.txt

pip install "apache-airflow==${AIRFLOW_VERSION}" --constraint "${CONSTRAINT_URL}"

本次使用虚拟环境进行安装:

# 创建并切换到airflow虚拟环境
conda create -n airflow python=3.8
conda activate airflow

创建约束文件airflowInstall.sh添加官网给出的内容:

AIRFLOW_VERSION=2.7.2
PYTHON_VERSION="$(python --version | cut -d " " -f 2 | cut -d "." -f 1-2)"
CONSTRAINT_URL="https://raw.githubusercontent.com/apache/airflow/constraints-${AIRFLOW_VERSION}/constraints-${PYTHON_VERSION}.txt"
pip install "apache-airflow==${AIRFLOW_VERSION}" --constraint "${CONSTRAINT_URL}"

执行文件即可。也可以使用pip进行安装:

pip install "apache-airflow==2.7.2"

查询版本:

airflow version

3.启动单机版

3.1 快速启动

该命令初始化数据库、创建用户并启动所有组件。

airflow standalone

# 启动成功标志
standalone | Airflow is ready
standalone | Login with username: admin  password: ZUUNtd9ppZZTQuqy
standalone | Airflow Standalone is for development purposes only. Do not use this in production!

3.2 分步骤启动

如果您想手动运行Airflow的各个部分,而不是使用一体化的独立命令,您可以运行:

  1. 该命令用于执行数据库迁移。在使用 Airflow 之前,你需要初始化数据库结构。db migrate 命令会根据你的配置文件创建数据库表格,以便存储任务调度、任务实例、DAG(Directed Acyclic Graph,有向无环图)等信息。运行后的信息:
airflow db migrate

初始化数据库后的输出信息:

DB: sqlite:////root/airflow/airflow.db
Performing upgrade to the metadata database sqlite:////root/airflow/airflow.db
[2023-10-19T14:21:37.687+0800] {
   migration.py:213} INFO - Context impl SQLiteImpl.
[2023-10-19T14:21:37.688+0800] {
   migration.py:216} INFO - Will assume non-transactional DDL.
[2023-10-19T14:21:37.690+0800] {
   db.py:1620} INFO - Creating tables
INFO  [alembic.runtime.migration] Context impl SQLiteImpl.
INFO  [alembic.runtime.migration] Will assume non-transactional DDL.
WARNI [unusual_prefix_911b7e3bced5159145cb88698226ecde6e08c7be_example_kubernetes_executor] The example_kubernetes_executor example DAG requires the kubernetes provider. Please install it with: pip install apache-airflow[cncf.kubernetes]
WARNI [unusual_prefix_008dd7238a3787d68b758fe337b9f566c5014ba3_tutorial_taskflow_api_virtualenv] The tutorial_taskflow_api_virtualenv example DAG requires virtualenv, please install it.
WARNI [unusual_prefix_db2b4614a7fb1ba43706f0a1f2be91e808476bfa_example_python_operator] The virtalenv_python example task requires virtualenv, please install it.
WARNI [unusual_prefix_5624127e5a8d9c88ab5a41d62ecf92869309dd74_example_local_kubernetes_executor] Could not import DAGs in example_local_kubernetes_executor.py
Traceback (most recent call last):
  File "/root/anaconda3/envs/airflow/lib/python3.8/site-packages/airflow/example_dags/example_local_kubernetes_executor.py", line 37, in <module>
    from kubernetes.client import models as k8s
ModuleNotFoundError: No module named 'kubernetes'
WARNI [unusual_prefix_5624127e5a8d9c88ab5a41d62ecf92869309dd74_example_local_kubernetes_executor] Install Kubernetes dependencies with: pip install apache-airflow[cncf.kubernetes]
WARNI [unusual_prefix_f16a910b73b9eed67cbb95faa136bc7fd6c14eb6_workday] Could not import pandas. Holidays will not be considered.
Database migrating done!

2.该命令用于创建 Airflow 的用户。在这个例子中,它创建了一个名为 "admin" 的用户,具有管理员角色(Admin),并提供了一些用户信息,如名字、姓氏、电子邮件等。

airflow users create \
    --username admin \
    --firstname Peter \
    --lastname Parker \
    --role Admin \
    --email spiderman@superhero.org

airflow users create \
    --username test \
    --firstname te \
    --lastname st \
    --role Admin \
    --email testman@superhero.org

Password:
Repeat for confirmation:
[2023-10-19T15:08:26.070+0800] {
   manager.py:211} INFO - Added user %s
User "test" created with role "Admin"

3.该命令启动 Airflow 的 Web 服务器。Web 服务器提供了一个用户界面,你可以通过浏览器访问。--port 8080 选项指定了 Web 服务器监听的端口号,这里是 8080。你可以通过访问 http://localhost:8080 来打开 Airflow Web UI。

airflow webserver --port 8080 -D

4.该命令启动 Airflow 的调度器。调度器负责按照你的 DAG(工作流)定义定期运行任务。它会检查定义的任务调度时间,然后触发相应的任务实例。调度器是 Airflow 中关键的组件之一,确保任务按照计划执行。

airflow scheduler -D

-D: 表示以守护进程(daemon)模式运行。以守护进程模式运行意味着该进程将在后台持续运行,而不占用当前终端。

3.3 启动后

在运行这些命令后,Airflow将创建$AIRFLOW_HOME文件夹,并创建默认值为Airflow .cfg的文件,这将使您快速运行。您可以使用环境变量覆盖默认值,请参见配置参考:https://airflow.apache.org/docs/apache-airflow/stable/configurations-ref.html。您可以在$AIRFLOW_HOME/airflow.cfg中检查该文件,或者通过Admin->Configuration菜单中的UI检查该文件。如果由systemd启动webserver的PID将存储在$AIRFLOW_HOME/airflow-webserver.pid/run/airflow/webserver.pid文件中。

files-0.jpg

3.4 服务启动停止脚本

感谢 https://blog.csdn.net/weixin_45417821/article/details/128729413 的分享,脚本airflow-service.sh内容:

#!/bin/bash
case $1 in
"start"){
   
    echo " --------start airflow-------"
    conda activate airflow;airflow webserver -p 8080 -D;airflow scheduler -D;conda deactivate
};;
"stop"){
   
    echo " --------stop airflow-------"
    ps -ef | egrep 'scheduler|airflow-webserver' | grep -v grep | awk '{print $2}' | xargs kill -15
};;
esac

脚本的执行环境为非虚拟环境也就是Linux本Lin,为何要使用source进行执行小伙伴儿们可以自行学习啊:

# 启动
source ./airflow-service.sh start
# 停止
source ./airflow-service.sh stop

4.访问

4.1 登录

在浏览器中访问localhost:8080,并使用终端显示的管理员帐户详细信息登录。

login-0.jpg

4.2 测试

在主页中启用example_bash_operatorDAG。

example-0.jpg
页面的两条信息说明:

  • 开箱即用,Airflow使用SQLite数据库,由于使用此数据库后端不可能实现并行化,因此您应该很快就能适应该数据库。它与SequentialExecutor一起工作,后者只按顺序运行任务实例。虽然有很多限制,但它允许您快速启动和运行,并了解UI和命令行实用程序。
  • 当您将Airflow扩展并部署到生产环境中时,您还需要从我们在这里使用的独立命令转移到单独运行组件。您可以在生产部署中了解更多信息:https://airflow.apache.org/docs/apache-airflow/stable/administration-and-deployment/production-deployment.html

任务的详情:

example-1.jpg
下面是几个将触发几个任务实例的命令。当您运行下面的命令时,您应该能够在example_bash_operator DAG中看到作业的状态变化。

# 1.run your first task instance
airflow tasks test example_bash_operator runme_0 2015-01-01

# 执行成功标志
[2023-10-19T14:15:55.666+0800] {
   taskinstance.py:1400} INFO - Marking task as SUCCESS. dag_id=example_bash_operator, task_id=runme_0, execution_date=20150101T000000, start_date=20231019T061426, end_date=20231019T061555

# 2.run a backfill over 2 days
airflow dags backfill example_bash_operator \
    --start-date 2015-01-01 \
    --end-date 2015-01-02

# 执行成功标志
[2023-10-19T14:17:59.128+0800] {
   backfill_job_runner.py:412} INFO - [backfill progress] | finished run 2 of 2 | tasks waiting: 0 | succeeded: 10 | running: 0 | failed: 0 | skipped: 4 | deadlocked: 0 | not ready: 0
[2023-10-19T14:17:59.136+0800] {
   backfill_job_runner.py:971} INFO - Backfill done for DAG <DAG: example_bash_operator>. Exiting.

5.更新日志

  • 2024-02-21 修改启动脚本airflow-service.sh内容,及调用脚本。
相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
8月前
|
SQL 分布式计算 Hadoop
Azkaban【基础 01】核心概念+特点+Web界面+架构+Job类型(一篇即可入门Azkaban工作流调度系统)
【2月更文挑战第6天】Azkaban【基础 01】核心概念+特点+Web界面+架构+Job类型(一篇即可入门Azkaban工作流调度系统)
596 0
|
7月前
|
监控 数据处理 调度
使用Apache Airflow进行工作流编排:技术详解与实践
【6月更文挑战第5天】Apache Airflow是开源的工作流编排平台,用Python定义复杂数据处理管道,提供直观DAGs、强大调度、丰富插件、易扩展性和实时监控。本文深入介绍Airflow基本概念、特性,阐述安装配置、工作流定义、调度监控的步骤,并通过实践案例展示如何构建数据获取、处理到存储的工作流。Airflow简化了复杂数据任务管理,适应不断发展的数据技术需求。
1413 3
|
8月前
|
Java Linux DataX
DataX入门指南:快速部署和安装指南
DataX入门指南:快速部署和安装指南
1958 2
DataX入门指南:快速部署和安装指南
|
8月前
|
Prometheus 监控 数据可视化
面试分享:Airflow工作流调度系统架构与使用指南
【4月更文挑战第10天】Apache Airflow是关键的工作流调度系统,本文结合面试经验,深入探讨其核心架构和使用技巧。重点包括:1) Airflow的Scheduler、Web Server、Worker和Metadata Database组件;2) DAG、Task和Operator的概念;3) DAG编写、调度及错误处理策略;4) 监控与扩展性,如自定义Operator和最佳实践。通过学习,助你在面试中应对Airflow相关问题,并提升实际工作中的数据工程能力。
584 5
|
8月前
|
存储 数据安全/隐私保护 Docker
Airflow安装
Airflow安装
161 0
|
Java API 调度
Elastic-Job的快速入门,三分钟带你体验分布式定时任务
Elastic-Job的快速入门,三分钟带你体验分布式定时任务
Elastic-Job的快速入门,三分钟带你体验分布式定时任务
|
存储 Kubernetes 负载均衡
k8s离线安装部署教程X86(一)
k8s离线安装部署教程 文件名称 版本号 linux核心 docker版本 20.10.9 x86 k8s版本 v1.22.4 x86 kuboard v3 x86 一、k8s(x86) 1.dock
1829 0
|
Kubernetes 负载均衡 监控
k8s离线安装部署教程X86(二)
k8s离线安装部署教程 文件名称 版本号 linux核心 docker版本 20.10.9 x86 k8s版本 v1.22.4 x86 kuboard v3 x86 6.设置ipvs模式 k8s整个集
861 0
|
前端开发 调度 Apache
作业调度中心Apache Airflow二次开发初体验
作业调度中心Apache Airflow二次开发初体验
1715 1
作业调度中心Apache Airflow二次开发初体验
|
缓存 关系型数据库 MySQL
Azkaban任务调度系统之安装实战
Centos7下,Azkaban的安装实战

热门文章

最新文章