LightGBM高级教程:自动调参与超参数优化

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: LightGBM高级教程:自动调参与超参数优化【2月更文挑战第5天】

导言

LightGBM作为一种高效的梯度提升决策树算法,具有许多可调参数。为了优化模型性能,通常需要进行调参和超参数优化。本教程将介绍如何在Python中使用不同的技术来进行自动调参和超参数优化,以提高LightGBM模型的性能。

使用Grid Search进行参数搜索

Grid Search是一种常用的参数搜索方法,它通过指定一组参数的候选值来搜索最优的参数组合。以下是一个简单的示例:

from sklearn.model_selection import GridSearchCV

# 定义参数候选值
param_grid = {
   
    'num_leaves': [10, 20, 30],
    'learning_rate': [0.01, 0.1, 1],
    'n_estimators': [50, 100, 200]
}

# 定义LightGBM模型
lgb_model = lgb.LGBMClassifier()

# 使用Grid Search进行参数搜索
grid_search = GridSearchCV(lgb_model, param_grid, cv=5, scoring='accuracy')
grid_search.fit(X_train, y_train)

# 输出最优参数组合
print("Best Parameters:", grid_search.best_params_)

# 输出最优模型在测试集上的性能
print("Best Score:", grid_search.best_score_)
AI 代码解读

使用Random Search进行参数搜索

Random Search是另一种常用的参数搜索方法,它通过在参数空间中随机采样来搜索最优的参数组合。以下是一个简单的示例:

from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import uniform, randint

# 定义参数分布
param_dist = {
   
    'num_leaves': randint(10, 50),
    'learning_rate': uniform(0.01, 0.1),
    'n_estimators': randint(50, 200)
}

# 使用Random Search进行参数搜索
random_search = RandomizedSearchCV(lgb_model, param_dist, n_iter=10, cv=5, scoring='accuracy')
random_search.fit(X_train, y_train)

# 输出最优参数组合
print("Best Parameters:", random_search.best_params_)

# 输出最优模型在测试集上的性能
print("Best Score:", random_search.best_score_)
AI 代码解读

使用Hyperopt进行超参数优化

Hyperopt是一种基于贝叶斯优化的超参数优化工具,它可以在较少的迭代次数下找到较好的参数组合。以下是一个简单的示例:

from hyperopt import hp, fmin, tpe, Trials

# 定义参数空间
space = {
   
    'num_leaves': hp.quniform('num_leaves', 10, 50, 1),
    'learning_rate': hp.uniform('learning_rate', 0.01, 0.1),
    'n_estimators': hp.quniform('n_estimators', 50, 200, 1)
}

# 定义评价函数
def objective(params):
    lgb_model = lgb.LGBMClassifier(**params)
    score = cross_val_score(lgb_model, X_train, y_train, cv=5, scoring='accuracy').mean()
    return -score

# 使用Hyperopt进行超参数优化
trials = Trials()
best = fmin(objective, space, algo=tpe.suggest, max_evals=10, trials=trials)

# 输出最优参数组合
print("Best Parameters:", best)

# 输出最优模型在测试集上的性能
lgb_model_best = lgb.LGBMClassifier(**best)
lgb_model_best.fit(X_train, y_train)
print("Best Score:", lgb_model_best.score(X_test, y_test))
AI 代码解读

结论

通过本教程,您学习了如何在Python中使用Grid Search、Random Search和Hyperopt进行自动调参和超参数优化。这些技术可以帮助您找到最优的参数组合,从而提高LightGBM模型的性能。

通过这篇博客教程,您可以详细了解如何在Python中使用不同的技术进行LightGBM的自动调参和超参数优化。您可以根据自己的需求选择适合的方法来优化LightGBM模型的性能。

目录
打赏
0
2
2
0
373
分享
相关文章
鲁棒优化入门(三)——鲁棒优化工具箱RSOME快速上手与应用实例
本文主要参考RSOME工具箱的用户手册《Users Guide for RSOME》 RSOME的用户手册并不是很长,但一些地方可能不是特别好理解,在这里我主要是通过写博客分享一下我的使用方法,和大家一起学习,也能加深自己的理解。
《揭秘梯度下降算法超参数自动调优的神奇方法》
梯度下降算法是机器学习中的核心优化工具,选择合适的超参数至关重要。常见的自动调优方法包括:1) 网格搜索,适用于超参数少且计算资源充足的情况;2) 随机搜索,计算效率高,适合高维空间;3) 贝叶斯优化,能有效利用评估结果,适用于昂贵的目标函数;4) 学习率调整,如指数衰减、余弦退火等,提高训练效率和稳定性。根据具体问题和资源选择合适方法或结合多种方法以达到最佳效果。
DeepSeek开源周第四弹之三!Profiling Data:训练V3/R1时计算与通信重叠策略的性能分析数据
DeepSeek开源的Profiling Data是基于PyTorch Profiler捕获的性能分析数据,帮助开发者优化深度学习模型的训练和推理过程,提升系统整体效率。
110 0
Optuna发布 4.0 重大更新:多目标TPESampler自动化超参数优化速度提升显著
Optuna,广受欢迎的超参数优化框架,近日发布了其第四个主要版本。自2018年问世以来,Optuna迅速成为机器学习领域的关键工具,目前拥有10,000+ GitHub星标、每月300万+下载量、16,000+代码库使用、5,000+论文引用及18,000+ Kaggle使用。Optuna 4.0引入了OptunaHub平台,支持功能共享;正式推出Artifact Store管理生成文件;稳定支持NFS的JournalStorage实现分布式优化;显著加速多目标TPESampler,并引入新Terminator算法。
304 9
Optuna发布 4.0 重大更新:多目标TPESampler自动化超参数优化速度提升显著
使用Python实现超参数调优
使用Python实现超参数调优
94 0
CatBoost中级教程:超参数调优与模型选择
CatBoost中级教程:超参数调优与模型选择【2月更文挑战第12天】
1037 2
【Python强化学习】动态规划法中策略迭代和值迭代求解冰湖问题实战(图文解释 附源码)
【Python强化学习】动态规划法中策略迭代和值迭代求解冰湖问题实战(图文解释 附源码)
201 0
强化学习从基础到进阶-案例与实践[5]:梯度策略、添加基线(baseline)、优势函数、动作分配合适的分数(credit)
强化学习从基础到进阶-案例与实践[5]:梯度策略、添加基线(baseline)、优势函数、动作分配合适的分数(credit)
强化学习从基础到进阶-案例与实践[5]:梯度策略、添加基线(baseline)、优势函数、动作分配合适的分数(credit)
强化学习从基础到进阶-常见问题和面试必知必答5::梯度策略、添加基线(baseline)、优势函数、动作分配合适的分数(credit)
强化学习从基础到进阶-常见问题和面试必知必答5::梯度策略、添加基线(baseline)、优势函数、动作分配合适的分数(credit)
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等