在Flink CDC作业提交过程中,出现超时问题可能与多种因素有关

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 【2月更文挑战第8天】在Flink CDC作业提交过程中,出现超时问题可能与多种因素有关

在Flink CDC作业提交过程中,出现超时问题可能与多种因素有关。首先,Flink CDC提供了一些配置参数来控制连接超时时间,例如connection.timeout.ms参数用于设置与源数据库之间的连接超时时间。如果连接超时,可以考虑增加此超时时间或优化MySQL的配置以减少负载。

其次,超时问题可能与checkpoint操作有关。当数据量过大或MySQL负载过高时,snapshot split需要长时间读取处理数据,可能导致checkpoint超时。为了解决这一问题,可以尝试调整checkpoint的间隔时间或调整checkpoint的时间长度。此外,还可以考虑降低Source的并发度来减少系统的压力。

在Flink on Yarn模式下,对job作业进行指标监控的方式有很多。首先,可以使用Flink Metrics来对各项性能指标如全链路吞吐、全链路时延、吞吐时延等进行监控和调优。Flink支持多种汇报监控指标(metrics)的reporter,包括JMX、SLF4J、InfluxDB、Prometheus等。

特别是,如果使用Prometheus+Grafana进行监控,可以实时查看作业运行状态,这对于保证实时作业7 x 24小时运行至关重要。此外,在Per-Job模式中,每个Flink job任务都会启动一个对应的Flink集群,基于Yarn提交后会在Yarn中同时运行多个实时Flink任务。

另外,对于Yarn的任务,其有优先级,可以根据优先级运行作业。基于Yarn调度系统,能够自动化地处理各个角色的Failover (容错)。JobManager进程和TaskManager进程都由Yarn NodeManager监控。如果JobManager进程异常退出,则Yarn ResourceManager会重新调度JobManager到其他机器。如果TaskManager进程异常退出,JobManager会收到消息并重新向Yarn ResourceManager申请资源,重新启动TaskManager。通过这种方式也可以更好地监控和优化job作业的性能。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
1月前
|
SQL API Apache
Dinky 和 Flink CDC 在实时整库同步的探索之路
本次分享围绕 Dinky 的整库同步技术演进,从传统数据集成方案的痛点出发,探讨了 Flink CDC Yaml 作业的探索历程。内容分为三个部分:起源、探索、未来。在起源部分,分析了传统数据集成方案中全量与增量割裂、时效性低等问题,引出 Flink CDC 的优势;探索部分详细对比了 Dinky CDC Source 和 Flink CDC Pipeline 的架构与能力,深入讲解了 YAML 作业的细节,如模式演变、数据转换等;未来部分则展望了 Dinky 对 Flink CDC 的支持与优化方向,包括 Pipeline 转换功能、Transform 扩展及实时湖仓治理等。
384 12
Dinky 和 Flink CDC 在实时整库同步的探索之路
|
2月前
|
Oracle 关系型数据库 Java
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
本文介绍通过Flink CDC实现Oracle数据实时同步至崖山数据库(YashanDB)的方法,支持全量与增量同步,并涵盖新增、修改和删除的DML操作。内容包括环境准备(如JDK、Flink版本等)、Oracle日志归档启用、用户权限配置、增量日志记录设置、元数据迁移、Flink安装与配置、生成Flink SQL文件、Streampark部署,以及创建和启动实时同步任务的具体步骤。适合需要跨数据库实时同步方案的技术人员参考。
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
|
2月前
|
关系型数据库 MySQL 数据库
基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
TIS 是一款基于Web-UI的开源大数据集成工具,通过与人大金仓Kingbase的深度整合,提供高效、灵活的实时数据集成方案。它支持增量数据监听和实时写入,兼容MySQL、PostgreSQL和Oracle模式,无需编写复杂脚本,操作简单直观,特别适合非专业开发人员使用。TIS率先实现了Kingbase CDC连接器的整合,成为业界首个开箱即用的Kingbase CDC数据同步解决方案,助力企业数字化转型。
324 5
基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
|
2月前
|
存储 SQL Java
Flink CDC + Hologres高性能数据同步优化实践
本文整理自阿里云高级技术专家胡一博老师在Flink Forward Asia 2024数据集成(二)专场的分享,主要内容包括:1. Hologres介绍:实时数据仓库,支持毫秒级写入和高QPS查询;2. 写入优化:通过改进缓冲队列、连接池和COPY模式提高吞吐量和降低延迟;3. 消费优化:优化离线场景和分区表的消费逻辑,提升性能和资源利用率;4. 未来展望:进一步简化用户操作,支持更多DDL操作及全增量消费。Hologres 3.0全新升级为一体化实时湖仓平台,提供多项新功能并降低使用成本。
329 1
Flink CDC + Hologres高性能数据同步优化实践
|
2月前
|
分布式计算 关系型数据库 MySQL
Flink CDC 3.3.0 发布公告
Flink CDC 3.3.0 发布公告
130 14
|
2月前
|
SQL 弹性计算 DataWorks
Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
112 6
|
2月前
|
SQL 人工智能 关系型数据库
Flink CDC YAML:面向数据集成的 API 设计
Flink CDC YAML:面向数据集成的 API 设计
|
Oracle 关系型数据库 MySQL
flink cdc 插件问题之报错如何解决
Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。
|
Java 关系型数据库 MySQL
Flink CDC有见这个报错不?
【2月更文挑战第29天】Flink CDC有见这个报错不?
170 2
|
监控 关系型数据库 MySQL
Flink CDC产品常见问题之使用3.0测试mysql到starrocks启动报错如何解决
Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。

热门文章

最新文章