机器学习——主成分分析(PCA)

简介: 机器学习——主成分分析(PCA)

主成分分析(Principal Component Analysis,简称PCA)是一种常用的无监督学习算法,用于降维和数据可视化。主要目标是将高维数据转换成低维空间,同时尽可能保留原始数据的信息。

PCA的主要思想是通过线性变换将原始数据映射到一个新的坐标系中,新坐标系中的每个维度都是原始数据中各个特征的线性组合。这样做的目的是使得新坐标系的第一个维度(也被称为第一主成分)包含尽可能多的原始数据的信息,第二主成分包含的信息比第一主成分少一些,依次类推,直到最后的主成分几乎包含很少甚至没有信息。

PCA算法的主要步骤如下:

  1. 对原始数据进行中心化处理,即将每个特征的平均值减去。
  2. 计算原始数据的协方差矩阵。
  3. 对协方差矩阵进行特征值分解,得到特征值和特征向量。
  4. 根据特征值从大到小排序,选择前k个特征向量,其中k是希望降维后的维度。
  5. 通过选取的特征向量构造变换矩阵。
  6. 将原始数据乘以变换矩阵,得到降维后的数据。

PCA算法的应用包括数据可视化、特征提取和降维等方面。它可以帮助我们更好地理解数据,并且在某些情况下可以提高后续机器学习算法的性能。然而,PCA也有一些限制,例如对非线性关系不敏感,因此需要根据具体任务选择合适的降维算法。

目录
相关文章
|
4月前
|
机器学习/深度学习 算法 数据可视化
机器学习模型中特征贡献度分析:预测贡献与错误贡献
本文将探讨特征重要性与特征有效性之间的关系,并引入两个关键概念:预测贡献度和错误贡献度。
477 3
|
23天前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
124 15
|
28天前
|
机器学习/深度学习 数据采集 运维
机器学习在运维中的实时分析应用:新时代的智能运维
机器学习在运维中的实时分析应用:新时代的智能运维
80 12
|
2月前
|
机器学习/深度学习 分布式计算 算法
【大数据分析&机器学习】分布式机器学习
本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。
299 5
|
3月前
|
机器学习/深度学习 数据可视化 数据挖掘
机器学习中空间和时间自相关的分析:从理论基础到实践应用
空间和时间自相关是数据分析中的重要概念,揭示了现象在空间和时间维度上的相互依赖关系。本文探讨了这些概念的理论基础,并通过野火风险预测的实际案例,展示了如何利用随机森林模型捕捉时空依赖性,提高预测准确性。
135 0
机器学习中空间和时间自相关的分析:从理论基础到实践应用
|
3月前
|
数据采集 移动开发 数据可视化
模型预测笔记(一):数据清洗分析及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)
这篇文章介绍了数据清洗、分析、可视化、模型搭建、训练和预测的全过程,包括缺失值处理、异常值处理、特征选择、数据归一化等关键步骤,并展示了模型融合技术。
257 1
模型预测笔记(一):数据清洗分析及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)
|
3月前
|
机器学习/深度学习 数据可视化 算法
机器学习中的回归分析:理论与实践
机器学习中的回归分析:理论与实践
|
3月前
|
机器学习/深度学习 数据采集 算法
【Python篇】从零到精通:全面分析Scikit-Learn在机器学习中的绝妙应用
【Python篇】从零到精通:全面分析Scikit-Learn在机器学习中的绝妙应用
61 2
|
3月前
|
机器学习/深度学习 数据挖掘
二、机器学习之回归模型分析
二、机器学习之回归模型分析
276 0
|
4月前
|
机器学习/深度学习 存储 人工智能
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
66 0
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计