人工智能平台PAI问题之cuda报错如何解决

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 人工智能平台PAI是指阿里云提供的机器学习平台服务,支持建模、训练和部署机器学习模型;本合集将介绍机器学习PAI的功能和操作流程,以及在使用过程中遇到的问题和解决方案。

问题一:请教机器学习PAIbatch size时候导致cuda报错问题怎么解决?


请教一下,之前遇到过比较大的batch size时候导致cuda报illegal memory access的问题吗?


参考回答:

当批量大小非常大时,可能会导致CUDA内存耗尽或发生illegal memory access的问题。这通常是因为模型需要的GPU内存超过了GPU可用内存的限制,或者由于模型参数的组织方式不同,而导致内存访问越界的问题。

您可以尝试调整批量大小,或者考虑使用更大的GPU内存。您还可以尝试使用分布式训练,将模型参数分散到多个GPU上,从而降低每个GPU的内存需求。而且您可以使用CUDA的内存管理工具,如cuda-memcheck和cuda-memleak-check,来帮助您诊断和解决这些问题。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/503289?spm=5176.8068049.0.0.77566d1989YhJO


问题二:机器学习PAI现在编译的版本是0.2.0吗,和release的0.4.0是不是有差别?


机器学习PAI现在编译的版本是0.2.0吗,和release的0.4.0是不是有差别?


参考回答:

有些差别了,用新的吧


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/503287?spm=5176.8068049.0.0.77566d1989YhJO


问题三:请问机器学习PAI中bladedisc在不需要dynamic的场景时可以关掉吗


请问机器学习PAI中bladedisc在不需要dynamic的场景时可以关掉吗?


参考回答:

如果是 PyTorch 的话,有一个 config 可以设置打开 static shape 优化,https://github.com/alibaba/BladeDISC/blob/main/pytorch_blade/torch_blade/config.py#L287


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/503285?spm=5176.8068049.0.0.77566d1989YhJO


问题四:机器学习PAI使用blade遇到超过pb限制的问题,请问有参数可以绕过去吗?


 

机器学习PAI使用blade遇到超过pb限制的问题,请问有参数可以绕过去吗?


参考回答:

看是在那个阶段出现的pb限制问题,新版本的bladedisc应该只有在tf圈图后导出子图编译时会使用pb,bladedisc编译完成后结果不会用pb来存储。这种情况下原始的pb应该就超过的2GB?(如果子图就超过了的话),一种可能的workaround方式时不freeze graph,这样const就不会被编译。另外老版本的bladedisc会使用pb来存储一部分编译后的结果,这个也会有可能超过2GB的限制,如果是这个问题,升级bladedisc应该可以解决


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/503284?spm=5176.8068049.0.0.77566d1989YhJO


问题五:机器学习PAI给userid推荐问题,可以帮忙看下吗?


机器学习PAI给userid推荐,也需要输入你要推荐的候选 itemids,才可以计算出rating进行推荐。需要同时提供用户和物品的特征向量作为输入,如果只提供用户的特征,模型没有办法计算rating。那训练是一行数据只有一个itemid的话,推荐时就需要把所有后选的itemid的数据全传进去是吗?


参考回答:

是的,在推荐时,通常需要将候选物品的特征一并传递给推荐模型。如果候选物品数量较大,可以考虑对物品进行批量预测或筛选,可以提高推荐效率


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/503283?spm=5176.8068049.0.0.77566d1989YhJO

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
6月前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
4月前
|
存储 人工智能 大数据
AI开发新范式,PAI模型构建平台升级发布
本次分享由阿里云智能集团产品专家高慧玲主讲,聚焦AI开发新范式及PAI模型构建平台的升级。分享分为四个部分,围绕“人人可用”和“面向生产”两大核心理念展开。通过降低AI工程化门槛、提供一站式全链路服务,PAI平台致力于帮助企业和开发者更高效地实现AI应用。案例展示中,介绍了多模态模型微调在文旅场景的应用,展示了如何快速复现并利用AI解决实际问题。最终目标是让AI技术更普及,赋能各行业,推动社会进步。
|
1月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
2月前
PAI-Rec推荐平台对于实时特征有三个层次
PAI-Rec推荐平台针对实时特征有三个处理层次:1) 离线模拟反推历史请求时刻的实时特征;2) FeatureStore记录增量更新的实时特征,模型特征导出样本准确性达99%;3) 通过callback回调接口记录请求时刻的特征。各层次确保了实时特征的准确性和时效性。
79 0
|
3月前
|
人工智能 自然语言处理 BI
基于阿里云人工智能平台的智能客服系统开发与部署
随着人工智能技术的发展,智能客服系统成为企业提升服务效率和用户体验的重要工具。阿里云提供包括自然语言处理(NLP)、语音识别(ASR)、机器学习(PAI)等在内的完整AI平台,助力企业快速构建智能客服系统。本文将通过电商平台案例,展示如何基于阿里云AI平台从零开始开发、部署智能客服系统,并介绍其核心优势与最佳实践,涵盖文本和语音客服、知识库管理及数据分析等功能,显著提升客户服务效率和用户满意度。
|
4月前
|
机器学习/深度学习 人工智能 算法
阿里云人工智能平台图像视频特征提取
本文介绍了图像与视频特征提取技术在人工智能和计算机视觉中的应用,涵盖图像质量评分、人脸属性分析、年龄分析、图像多标签打标、图文视频动态分类打标、视频质量评分及视频分类打标。通过深度学习模型如CNN和RNN,这些技术能从海量数据中挖掘有价值信息,为图像分类、目标检测、视频推荐等场景提供支持,提升分析精度与效率。
246 9
|
5月前
|
机器学习/深度学习 传感器 人工智能
人工智能与机器学习:改变未来的力量####
【10月更文挑战第21天】 在本文中,我们将深入探讨人工智能(AI)和机器学习(ML)的基本概念、发展历程及其在未来可能带来的革命性变化。通过分析当前最前沿的技术和应用案例,揭示AI和ML如何正在重塑各行各业,并展望它们在未来十年的潜在影响。 ####
160 27
|
5月前
|
数据采集 人工智能 智能设计
首个!阿里云人工智能平台率先通过国际标准认证
首个!阿里云人工智能平台率先通过国际标准认证
192 7
|
5月前
|
机器学习/深度学习 人工智能 算法
人工智能平台年度技术趋势
阿里云智能集团研究员林伟在年度技术趋势演讲中,分享了AI平台的五大方面进展。首先,他介绍了大规模语言模型(LLM)训练中的挑战与解决方案,包括高效故障诊断和快速恢复机制。其次,探讨了AI应用和服务的普及化,强调通过优化调度降低成本,使AI真正惠及大众。第三,提出了GreenAI理念,旨在提高AI工程效率,减少能源消耗。第四,讨论了企业级能力,确保数据和模型的安全性,并推出硬件到软件的全面安全方案。最后,介绍了整合多项核心技术的Pai Prime框架,展示了阿里云在自主可控AI核心框架下的整体布局和发展方向。
|
6月前
|
机器学习/深度学习 人工智能 监控
AutoTrain:Hugging Face 开源的无代码模型训练平台
AutoTrain 是 Hugging Face 推出的开源无代码模型训练平台,旨在简化最先进模型的训练过程。用户无需编写代码,只需上传数据即可创建、微调和部署自己的 AI 模型。AutoTrain 支持多种机器学习任务,并提供自动化最佳实践,包括超参数调整、模型验证和分布式训练。
568 4
AutoTrain:Hugging Face 开源的无代码模型训练平台

相关产品

  • 人工智能平台 PAI