人工智能平台PAI问题之cuda报错如何解决

本文涉及的产品
交互式建模 PAI-DSW,5000CU*H 3个月
简介: 人工智能平台PAI是指阿里云提供的机器学习平台服务,支持建模、训练和部署机器学习模型;本合集将介绍机器学习PAI的功能和操作流程,以及在使用过程中遇到的问题和解决方案。

问题一:请教机器学习PAIbatch size时候导致cuda报错问题怎么解决?


请教一下,之前遇到过比较大的batch size时候导致cuda报illegal memory access的问题吗?


参考回答:

当批量大小非常大时,可能会导致CUDA内存耗尽或发生illegal memory access的问题。这通常是因为模型需要的GPU内存超过了GPU可用内存的限制,或者由于模型参数的组织方式不同,而导致内存访问越界的问题。

您可以尝试调整批量大小,或者考虑使用更大的GPU内存。您还可以尝试使用分布式训练,将模型参数分散到多个GPU上,从而降低每个GPU的内存需求。而且您可以使用CUDA的内存管理工具,如cuda-memcheck和cuda-memleak-check,来帮助您诊断和解决这些问题。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/503289?spm=5176.8068049.0.0.77566d1989YhJO


问题二:机器学习PAI现在编译的版本是0.2.0吗,和release的0.4.0是不是有差别?


机器学习PAI现在编译的版本是0.2.0吗,和release的0.4.0是不是有差别?


参考回答:

有些差别了,用新的吧


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/503287?spm=5176.8068049.0.0.77566d1989YhJO


问题三:请问机器学习PAI中bladedisc在不需要dynamic的场景时可以关掉吗


请问机器学习PAI中bladedisc在不需要dynamic的场景时可以关掉吗?


参考回答:

如果是 PyTorch 的话,有一个 config 可以设置打开 static shape 优化,https://github.com/alibaba/BladeDISC/blob/main/pytorch_blade/torch_blade/config.py#L287


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/503285?spm=5176.8068049.0.0.77566d1989YhJO


问题四:机器学习PAI使用blade遇到超过pb限制的问题,请问有参数可以绕过去吗?


 

机器学习PAI使用blade遇到超过pb限制的问题,请问有参数可以绕过去吗?


参考回答:

看是在那个阶段出现的pb限制问题,新版本的bladedisc应该只有在tf圈图后导出子图编译时会使用pb,bladedisc编译完成后结果不会用pb来存储。这种情况下原始的pb应该就超过的2GB?(如果子图就超过了的话),一种可能的workaround方式时不freeze graph,这样const就不会被编译。另外老版本的bladedisc会使用pb来存储一部分编译后的结果,这个也会有可能超过2GB的限制,如果是这个问题,升级bladedisc应该可以解决


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/503284?spm=5176.8068049.0.0.77566d1989YhJO


问题五:机器学习PAI给userid推荐问题,可以帮忙看下吗?


机器学习PAI给userid推荐,也需要输入你要推荐的候选 itemids,才可以计算出rating进行推荐。需要同时提供用户和物品的特征向量作为输入,如果只提供用户的特征,模型没有办法计算rating。那训练是一行数据只有一个itemid的话,推荐时就需要把所有后选的itemid的数据全传进去是吗?


参考回答:

是的,在推荐时,通常需要将候选物品的特征一并传递给推荐模型。如果候选物品数量较大,可以考虑对物品进行批量预测或筛选,可以提高推荐效率


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/503283?spm=5176.8068049.0.0.77566d1989YhJO

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法
【AAAI 2024】再创佳绩!阿里云人工智能平台PAI多篇论文入选
阿里云人工智能平台PAI发表的多篇论文在AAAI-2024上正式亮相发表。AAAI是由国际人工智能促进协会主办的年会,是人工智能领域中历史最悠久、涵盖内容最广泛的国际顶级学术会议之一,也是中国计算机学会(CCF)推荐的A类国际学术会议。论文成果是阿里云与浙江大学、华南理工大学联合培养项目等共同研发,深耕以通用人工智能(AGI)为目标的一系列基础科学与工程问题,包括多模态理解模型、小样本类增量学习、深度表格学习和文档版面此次入选意味着阿里云人工智能平台PAI自研的深度学习算法达到了全球业界先进水平,获得了国际学者的认可,展现了阿里云人工智能技术创新在国际上的竞争力。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习:开启智能新时代的密钥
人工智能与机器学习:开启智能新时代的密钥
23 0
|
2月前
|
机器学习/深度学习 人工智能 Java
机器学习PAI报错问题之跑collective gpu分布式报错如何解决
人工智能平台PAI是是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务;本合集将收录PAI常见的报错信息和解决策略,帮助用户迅速定位问题并采取相应措施,确保机器学习项目的顺利推进。
|
16天前
|
机器学习/深度学习 人工智能 运维
【人工智能技术专题】「入门到精通系列教程」打好AI基础带你进军人工智能领域的全流程技术体系(机器学习知识导论)(二)
【人工智能技术专题】「入门到精通系列教程」打好AI基础带你进军人工智能领域的全流程技术体系(机器学习知识导论)
49 1
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
【人工智能技术专题】「入门到精通系列教程」打好AI基础带你进军人工智能领域的全流程技术体系(机器学习知识导论)(一)
【人工智能技术专题】「入门到精通系列教程」打好AI基础带你进军人工智能领域的全流程技术体系(机器学习知识导论)
53 1
|
20天前
|
机器学习/深度学习 JSON 分布式计算
机器学习PAI常见问题之部署报错如何解决
PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。
|
20天前
|
机器学习/深度学习 SQL 人工智能
机器学习PAI常见问题之训练模型报错如何解决
PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。
|
20天前
|
机器学习/深度学习 存储 算法
机器学习PAI常见问题之页面运行报错如何解决
PAI(平台为智能,Platform for Artificial Intelligence)是阿里云提供的一个全面的人工智能开发平台,旨在为开发者提供机器学习、深度学习等人工智能技术的模型训练、优化和部署服务。以下是PAI平台使用中的一些常见问题及其答案汇总,帮助用户解决在使用过程中遇到的问题。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
解密人工智能:探索机器学习奥秘
解密人工智能:探索机器学习奥秘
19 1
|
2月前
|
机器学习/深度学习 人工智能 开发工具
机器学习PAI报错问题之配了tf_config开启训练报错如何解决
人工智能平台PAI是是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务;本合集将收录PAI常见的报错信息和解决策略,帮助用户迅速定位问题并采取相应措施,确保机器学习项目的顺利推进。

相关产品

  • 人工智能平台 PAI