【Elasticsearch专栏 01】深入探索:Elasticsearch的正向索引和倒排索引是什么?

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 正向索引根据文档ID直接查找文档内容,适用于精确匹配场景;而倒排索引则基于文档内容构建,通过关键词快速定位相关文档,适用于全文搜索,显著提高查询效率,是搜索引擎的核心技术。

什么是Elasticsearch的正向索引和倒排索引?

首先,要明确的是,Elasticsearch本质上只使用倒排索引来实现高效的搜索和查询功能。正向索引虽然在某些数据库和搜索系统中被提及,但在Elasticsearch的上下文中并不是一个核心概念。下面我详细解释倒排索引,并简要提及正向索引以提供对比。

1.倒排索引(Inverted Index)

倒排索引是Elasticsearch中用于实现全文搜索的核心数据结构。它基于单词(term)建立索引,而不是基于文档。这意味着,对于文档中的每个单词,倒排索引都会记录哪些文档包含该单词以及该单词在文档中的位置信息(通常是词频和位置)。

倒排索引的结构

  1. 词典(Term Dictionary):包含所有单词的列表,每个单词指向一个或多个倒排列表。
  2. 倒排列表(Posting List):对于每个单词,包含一个列表,其中记录了包含该单词的文档ID和该单词在文档中的位置信息。

示例

假设有以下两个文档:

文档1: "Elasticsearch is a powerful search engine."  
文档2: "Elasticsearch allows you to store, search, and analyze data efficiently."

对应的倒排索引可能如下:

词典

  • Elasticsearch
  • is
  • a
  • powerful
  • search
  • engine
  • allows
  • you
  • to
  • store
  • analyze
  • data
  • efficiently

倒排列表

  • Elasticsearch: [文档1的ID, 位置1; 文档2的ID, 位置1]
  • is: [文档1的ID, 位置2]
  • a: [文档1的ID, 位置3]
  • ... (其他单词的倒排列表)
  • efficiently: [文档2的ID, 位置11]

2.正向索引(Forward Index)

正向索引是基于文档建立的,它记录文档中每个单词的位置信息。在正向索引中,通过文档ID可以迅速找到文档中的所有单词及其位置。

正向索引的示例

  • 文档1: ["Elasticsearch", 位置1; "is", 位置2; "a", 位置3; ...]
  • 文档2: ["Elasticsearch", 位置1; "allows", 位置2; "you", 位置3; ...]

注意:在Elasticsearch的实际实现中,并不直接使用正向索引进行搜索。正向索引主要用于辅助倒排索引,例如用于支持高亮显示、短语搜索等功能。

Elasticsearch中的正向索引和倒排索引是两种截然不同的索引方式,它们在数据存储和检索方式上有着根本的区别。下面我】将详细解释它们之间的区别,并提供相关的代码片段。

3.小结

正向索引和倒排索引各有其优缺点。正向索引结构简单,但检索效率较低;而倒排索引检索效率高,但结构相对复杂。在实际应用中,倒排索引被广泛用于支持高效的全文搜索和复杂查询操作。然而,在某些特定场景下,如需要快速访问单个文档时,正向索引可能更为适用。

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
3月前
|
自然语言处理 大数据 应用服务中间件
大数据-172 Elasticsearch 索引操作 与 IK 分词器 自定义停用词 Nginx 服务
大数据-172 Elasticsearch 索引操作 与 IK 分词器 自定义停用词 Nginx 服务
80 5
|
3月前
|
存储 分布式计算 大数据
大数据-169 Elasticsearch 索引使用 与 架构概念 增删改查
大数据-169 Elasticsearch 索引使用 与 架构概念 增删改查
75 3
|
5月前
|
存储 API 数据库
检索服务elasticsearch索引(Index)
【8月更文挑战第23天】
75 6
|
2月前
|
存储 缓存 监控
优化Elasticsearch 索引设计
优化Elasticsearch 索引设计
27 5
|
2月前
|
存储 JSON 关系型数据库
Elasticsearch 索引
【11月更文挑战第3天】
43 4
|
2月前
|
存储 自然语言处理 数据库
Elasticsearch倒排索引
【11月更文挑战第2天】
50 1
|
2月前
|
测试技术 API 开发工具
ElasticSearch7.6.x 模板及滚动索引创建及注意事项
ElasticSearch7.6.x 模板及滚动索引创建及注意事项
50 8
|
2月前
|
测试技术 API 开发工具
ElasticSearch核心概念:倒排索引
ElasticSearch核心概念:倒排索引
60 6
|
4月前
|
JSON 自然语言处理 数据库
ElasticSearch基础1——索引和文档。Kibana,RestClient操作索引和文档+黑马旅游ES库导入
概念、ik分词器、倒排索引、索引和文档的增删改查、RestClient对索引和文档的增删改查
ElasticSearch基础1——索引和文档。Kibana,RestClient操作索引和文档+黑马旅游ES库导入
|
4月前
|
存储 搜索推荐 数据建模
Elasticsearch 的数据建模与索引设计
【9月更文第3天】Elasticsearch 是一个基于 Lucene 的搜索引擎,广泛应用于全文检索、数据分析等领域。为了确保 Elasticsearch 的高效运行,合理的数据建模和索引设计至关重要。本文将探讨如何为不同的应用场景设计高效的索引结构,并分享一些数据建模的最佳实践。
171 2