参数是ChaGPT的近6倍!英特尔公布AI大模型Aurora genAI,具备1万亿参数

简介: 参数是ChaGPT的近6倍!英特尔公布AI大模型Aurora genAI,具备1万亿参数

据 wccftech 报道,英特尔近日公布了旗下生成式 AI 大模型 Aurora genAI。

据悉,Aurora genAI 参数量高达 1 万亿,其开发依赖于 Megatron 和 DeepSpeed 框架,这些结构增强了模型的强度和容量。而 ChatGPT 模型参数量是 1750 亿,这也意味着,Aurora genAI 的参数量是 ChatGPT 的近 6 倍

据悉,Aurora genAI 模型是英特尔是与阿贡国家实验室和 HPE 合作开发的,它是一个纯粹 以科学为中心的生成式 AI 模型,将被用于各类科学应用,包括分子和材料设计、乃至涵盖数百万来源的综合知识素材,据此为系统生物学、高分子化学、能源材料、气候科学和宇宙学等提供值得探索的实验设计思路。这些模型还将用于加速癌症及其他疾病的相关生物过程的识别速度,并为药物设计提供靶点建议。

除了科研之外,Aurora genAI 还具有在自然语言处理、机器翻译、图像识别、语音识别、金融建模等商业领域的应用潜力。

阿贡实验室副主任 Rick Stevens 介绍称,“这个项目希望充分利用 Aurora 超级计算机的全部潜力,为能源部各实验室的下游科学研究和其他跨机构合作计划提供资源。”

根据介绍,Aurora genAI 模型将由生物学、化学、材料科学、物理学、医学等学科的常规文本、代码、科学文本和结构化数据训练而成。阿贡实验室正带头组织国际合作以推进该项目,参与方包括英特尔、HPE、能源部各下辖实验室、美国及其他国际性高校、非营利组织,以及 RIKEN 等国际合作伙伴。

Aurora genAI 模型将运行在英特尔为阿拉贡国家实验室开发的 Aurora 超算上,其性能达到了 200 亿亿次,是当前 TOP500 超算冠军 Frontier 的 2 倍。近日,英特尔和阿贡国家实验室还公布了 Aurora 的安装进度、系统规格和早期性能测试结果:

  • 英特尔已完成 Aurora 超级计算机 1 万多块刀片服务器的交付。
  • Aurora 的完整系统采用 HPE Cray EX 超算架构,将拥有 63744 个 GPU 和 21248 个 CPU,辅以 1024 个 DAOS 存储节点。Aurora 还将配备 HPE Slingshot 高性能以太网络。
  • 早期性能结果显示,Aurora 超算系统在实际科学和工程负载上具有领先性能,性能表现比 AMD MI250 GPU 高出 2 倍,在 QMCPACK 量子力学应用程序上的性能比 H100 提高 20%,且能够在数百个节点上保持近线性的算力扩展。作为 ChaGPT 的有力竞争者,Aurora genAI 的公布预示着 AI 大模型赛道又迎来了新的重磅玩家,并极有可能在未来对各种科学领域产生重大影响。不过目前,Aurora genAI 更像是处于概念阶段,英特尔的目标是到 2024 年完成 Aurora genAI 模型的构建。

对于英特尔的万亿参数 AI 大模型 Aurora genAI,有网友表示:“我不相信仅仅增加参数数量就能改进模型,我认为我们不应该发布新闻稿追逐增加参数数量。我在研究中还发现,较大的模型通常不会表现得更好,但由于不负责任的营销,这变得越来越难以向非技术人员解释。如果我们对这些营销放任不管,我们会让很多人失望,并降低大家对 AI 未来增长潜力的信心——我们不想要另一个 AI 寒冬。训练这些大型模型会产生巨大的环境成本,而且理解、使用和控制这些非常大的模型(即使作为研究人员)也变得更加困难。”

AI 军备竞赛进入“万亿参数模型”对抗时代?

近几年,随着 AI 大模型赛道持续升温,越来越多的科技巨头加入进来,并不断打破参数规模记录。

2021 年 1 月,谷歌大脑团队重磅推出超级语言模型 Switch Transformer,该模型有 1.6 万亿个参数,是当时规模最大的 NLP 模型。同年 6 月,智源研究院发布悟道 2.0,该系统参数数量已超过 1.75 万亿,是当时全球最大的大规模智能模型系统。同年 11 月,阿里达摩院发布多模态大模型 M6,其参数已从万亿跃迁至 10 万亿,是当时全球最大的 AI 预训练模型。

有分析指出,中美 AI 军备竞赛的核心战场正是万亿级预训练模型。打造千万亿参数规模的预训练模型是人类的一个超级工程,可能会对国家甚至人类社会产生重大影响。

那么,模型参数越大就越好吗?

鹏城实验室网络智能部云计算所副所长相洋曾在接受 InfoQ 采访时指出:

我们最初见到的一些模型是几万个参数,后来就到了几亿、几十亿、百亿、千亿,还有可能上万亿。目前从事实来说,的确是模型越大数据越多,且质量越好,带来的性能是越高的。但是我个人认为,这个提升曲线可能会有一个瓶颈期,到了瓶颈或者平台期的时候,它的上升速度可能就会缓慢,或者说基本就达到稳定了。就目前而言,可能我们还没有到达平台期。所以说,“模型参数越大越好”这个说法在一定程度上是成立的。

但是,判断一个大模型是否优秀,不能只看参数,还要看实际表现。模型得出来的任务效果好,我们就可以认为这个模型是个好模型。参数不是问题,当机器无论是在存储还是计算能力都足够强的时候,大模型也可以变成小模型。

此外,还要考虑模型的可解释能力,以及是否容易受噪声的攻击。如果该模型有一定的解释能力,那这个模型就是一个好模型;如果该模型不易被噪声数据或是其他因素影响的话,那这个模型也是一个好模型。

相关文章
|
5天前
|
人工智能 Java Serverless
阿里云函数计算助力AI大模型快速部署
随着人工智能技术的快速发展,AI大模型已经成为企业数字化转型的重要工具。然而,对于许多业务人员、开发者以及企业来说,探索和利用AI大模型仍然面临诸多挑战。业务人员可能缺乏编程技能,难以快速上手AI模型;开发者可能受限于GPU资源,无法高效构建和部署AI应用;企业则希望简化技术门槛,以更低的成本和更高的效率利用AI大模型。
41 12
|
4天前
|
人工智能 安全 数据安全/隐私保护
文档智能 & RAG让AI大模型更懂业务测评
文档智能 & RAG让AI大模型更懂业务
111 73
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
GLM-4V-Flash:智谱 AI 免费开放的图像理解大模型 API 接口
智谱AI推出的GLM-4V-Flash是一款专注于图像理解的免费开放大模型,提供API接口支持用户上传图片URL或Base64编码图片获取详细的图像描述。该模型通过深度学习和卷积神经网络技术,简化了图像分析流程,提高了开发效率,适用于内容审核、辅助视障人士、社交媒体、教育和电子商务等多个应用场景。
57 14
GLM-4V-Flash:智谱 AI 免费开放的图像理解大模型 API 接口
|
3天前
|
人工智能 安全 测试技术
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
EXAONE 3.5 是 LG AI 研究院推出的开源 AI 模型,擅长长文本处理,能够有效降低模型幻觉问题。该模型提供 24 亿、78 亿和 320 亿参数的三个版本,支持多步推理和检索增强生成技术,适用于多种应用场景。
36 9
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
|
5天前
|
机器学习/深度学习 人工智能
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
SNOOPI是一个创新的AI文本到图像生成框架,通过增强单步扩散模型的指导,显著提升模型性能和控制力。该框架包括PG-SB和NASA两种技术,分别用于增强训练稳定性和整合负面提示。SNOOPI在多个评估指标上超越基线模型,尤其在HPSv2得分达到31.08,成为单步扩散模型的新标杆。
44 10
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
|
5天前
|
人工智能 搜索推荐 开发者
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
Aurora是xAI为Grok AI助手推出的新图像生成模型,专注于生成高逼真度的图像,特别是在人物和风景图像方面。该模型支持文本到图像的生成,并能处理包括公共人物和版权形象在内的多种图像生成请求。Aurora的可用性因用户等级而异,免费用户每天能生成三张图像,而Premium用户则可享受无限制访问。
41 11
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
|
17小时前
|
机器学习/深度学习 存储 人工智能
2:转载【AI系统】模型演进与经典架构
本文深入探讨了AI计算模式对AI芯片设计和优化的重要性。通过分析经典模型结构、模型量化与压缩等关键技术,文章揭示了当前AI算法的发展现状,并提出了针对AI芯片设计的思考方向,包括支持不同精度计算单元、优化稀疏结构计算和提供专门的量化压缩硬件电路等。这些思考为未来AI芯片的高效设计提供了有价值的参考。
2:转载【AI系统】模型演进与经典架构
|
3天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
12月05日,由中国软件行业校园招聘与实习公共服务平台携手阿里魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·电子科技大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
|
6天前
|
存储 人工智能 搜索推荐
整合长期记忆,AI实现自我进化,探索大模型这一可能性
本文探讨了通过整合长期记忆(LTM),AI模型能否实现自我进化,以提升处理新任务和适应环境的能力。LTM能帮助模型存储和利用长期信息,提高决策质量和服务个性化水平。文章还讨论了LTM整合的挑战及解决方案,以及如何借鉴人类记忆机制设计有效的LTM策略。[论文链接](https://arxiv.org/pdf/2410.15665)
44 17
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
7.转载:【AI系统】大模型的到来
大模型的发展推动了AI系统与AI基础设施的革新。文章介绍了大模型从萌芽到爆发的过程,探讨了大模型对AI系统的影响,分析了AI系统与AI基础设施的区别,并详细讨论了数据准备、模型训练、部署及应用整合等环节的技术挑战与进展。强调了在大模型时代,AI系统的优化对于提升模型性能、降低成本的关键作用。
7.转载:【AI系统】大模型的到来