YOLOv8改进 | 2023Neck篇 | BiFPN双向特征金字塔网络(附yaml文件+代码)

简介: YOLOv8改进 | 2023Neck篇 | BiFPN双向特征金字塔网络(附yaml文件+代码)

一、本文介绍

本文给大家带来的改进机制是BiFPN双向特征金字塔网络,其是一种特征融合层的结构,也就是我们本文改进YOLOv8模型中的Neck部分,它的主要思想是通过多层级的特征金字塔和双向信息传递来提高精度。本文给大家带来的结构可以让大家自行调节网络结构大小,同时能够达到一定的轻量化效果(需要注意的是BiFPN正常是需要五个检测头的,但是YOLOv8只有三个检测头,所以我对其yaml文件进行了一定设计,从而支持三个头的检测,后面我也会出四个头的BiFPN,然后配合我前面的AFPN_Detect检测头来融合)。

推荐指数:⭐⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐⭐

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

二、BiFPN原理

image.png

2.1 BiFPN的基本原理

BiFPN(Bidirectional Feature Pyramid Network),双向特征金字塔网络是一种高效的多尺度特征融合网络,它在传统特征金字塔网络(FPN)的基础上进行了优化。主要特点包括:

1. 高效的双向跨尺度连接:BiFPN通过在自顶向下和自底向上路径之间建立双向连接,允许不同尺度特征间的信息更有效地流动和融合。

2. 简化的网络结构:BiFPN通过删除只有一个输入边的节点、在同一层级的输入和输出节点间添加额外边,以及将每个双向路径视为一个特征网络层并重复多次,来优化跨尺度连接。

3. 加权特征融合:BiFPN引入了可学习的权重来确定不同输入特征的重要性,从而提高了特征融合的效果。

我们可以将其基本原理概括分为以下几点:

1. 双向特征融合:BiFPN允许特征在自顶向下和自底向上两个方向上进行融合,从而更有效地结合不同尺度的特征。

2. 加权融合机制:BiFPN通过为每个输入特征添加权重来优化特征融合过程,使得网络可以更加重视信息量更大的特征。

3. 结构优化:BiFPN通过移除只有一个输入边的节点、添加同一层级的输入输出节点之间的额外边,并将每个双向路径视为一个特征网络层,来优化跨尺度连接。

我将通过下图为大家对比展示BiFPN与其他四种不同特征金字塔网络设计的不同以及BiFPN如何更有效地整合特征

image.png

(a) FPN (Feature Pyramid Network): 引入了自顶向下的路径来融合从第3层到第7层(P3 - P7)的多尺度特征。

(b) PANet: 在FPN的基础上增加了自底向上的额外路径。

(c) NAS-FPN: 使用神经架构搜索(NAS)来找到不规则的特征网络拓扑,然后重复应用相同的块。

(d) BiFPN: 通过高效的双向跨尺度连接和重复的块结构,改进了准确度和效率之间的权衡。

我们可以看出BiFPN通过双向路径允许特征信息在不同尺度间双向流动,这种双向流动可以看做是在不同尺度之间进行有效信息交换。这样的设计旨在通过强化特征的双向流动来提升特征融合的效率和有效性,从而提高目标检测的性能。

2.2 双向特征融合

双向特征融合在BiFPN(双向特征金字塔网络)中指的是一种机制,它允许在特征网络层中的信息在自顶向下和自底向上两个方向上流动和融合。这种方法与传统的单向特征金字塔网络(如PANet)相比,能够在不同层级之间更高效地融合特征,而无需增加显著的计算成本。

在BiFPN中,每一条双向路径(自顶向下和自底向上)被视作一个单独的特征网络层,然后这些层可以被重复多次,以促进更高级别的特征融合。这样做的结果是一个简化的双向网络,它增强了网络对特征融合的能力,使网络能够更有效地利用不同尺度的信息,从而提高目标检测的性能。

下图展示的是EfficientDet架构的具体细节,其中包含了EfficientNet作为骨干网络(backbone),以及BiFPN作为特征网络的使用。在这个架构中,BiFPN层通过其双向特征融合的能力,从EfficientNet骨干网络接收多尺度的输入特征,然后生成用于对象分类和边框预测的富有表现力的特征。

image.png

在BiFPN层中,我们可以看到不同尺度的特征(P2至P7)如何通过上下双向路径进行融合。这种结构设计的目的是在保持计算效率的同时最大化特征融合的效果,以提高对象检测的整体性能。图中还显示了类别预测网络和边框预测网络,这些是在BiFPN特征融合后用于预测对象类别和定位对象边界框的网络部分。

2.3 加权融合机制

加权融合机制是BiFPN中用于改进特征融合效果的一种技术。在传统的特征金字塔网络中,所有输入特征通常在没有区分的情况下等同对待,这意味着不同分辨率的特征被简单地相加在一起,而不考虑它们对输出特征的不同贡献。然而,在BiFPN中,观察到由于不同的输入特征具有不同的分辨率,它们通常对输出特征的贡献是不等的

为了解决这个问题,BiFPN提出了为每个输入添加一个额外的权重,并让网络学习每个输入特征的重要性:

image.png

是一个可学习的权重,可以是标量(每个特征),向量(每个通道)或多维张量(每个像素)。这些权重是可学习的,可以是标量(针对每个特征),向量(针对每个通道),或者多维张量(针对每个像素)。这种加权融合方法可以在最小化计算成本的同时实现与其他方法可比的准确度。

2.4 结构优化

结构优化是为了在不同的资源约束下,通过复合缩放方法确定不同的层数,从而在保持效率的同时提高准确性。我们通过分析观察BiFPN的设计,其结构优化包括:

1. 简化的双向网络:通过优化结构,减少了网络中的节点数,特别是移除了那些只有一个输入边的节点。这种简化的直觉是如果一个节点没有进行特征融合,即它只有一个输入边,那么它对于融合不同特征的特征网络的贡献会更小。

2. 增加额外的边缘:在相同层级的原始输入和输出节点之间增加了额外的边缘,以便在不显著增加成本的情况下融合更多的特征。

3. 重复使用双向路径:与只有单一自顶向下和自底向上路径的PANet不同,BiFPN将每条双向(自顶向下和自底向上)路径视为一个特征网络层,并重复多次,以实现更高级别的特征融合。

目录
相关文章
|
2月前
|
算法 计算机视觉 Python
YOLOv8优改系列二:YOLOv8融合ATSS标签分配策略,实现网络快速涨点
本文介绍了如何将ATSS标签分配策略融合到YOLOv8中,以提升目标检测网络的性能。通过修改损失文件、创建ATSS模块文件和调整训练代码,实现了网络的快速涨点。ATSS通过自动选择正负样本,避免了人工设定阈值,提高了模型效率。文章还提供了遇到问题的解决方案,如模块载入和环境配置问题。
112 0
YOLOv8优改系列二:YOLOv8融合ATSS标签分配策略,实现网络快速涨点
|
2月前
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
本文介绍了将BiFPN网络应用于YOLOv8以增强网络性能的方法。通过双向跨尺度连接和加权特征融合,BiFPN能有效捕获多尺度特征,提高目标检测效果。文章还提供了详细的代码修改步骤,包括修改配置文件、创建模块文件、修改训练代码等,以实现YOLOv8与BiFPN的融合。
211 0
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
|
2月前
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
该专栏专注于YOLOv8的 Neck 部分改进,融合了 BiFPN 网络,大幅提升检测性能。BiFPN 通过高效的双向跨尺度连接和加权特征融合,解决了传统 FPN 的单向信息流限制。文章详细介绍了 BiFPN 的原理及其实现方法,并提供了核心代码修改指导。点击链接订阅专栏,每周定时更新,助您快速提升模型效果。推荐指数:⭐️⭐️⭐️⭐️,涨点指数:⭐️⭐️⭐️⭐️。
186 0
|
5月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进 - 注意力机制】c2f结合CBAM:针对卷积神经网络(CNN)设计的新型注意力机制
【YOLOv8改进 - 注意力机制】c2f结合CBAM:针对卷积神经网络(CNN)设计的新型注意力机制
|
1天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
34 17
|
12天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
13天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
36 10
|
14天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
43 10
|
14天前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。
|
16天前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。