Python排序——二分查找

简介: Python排序——二分查找



 

二分搜索是一种在有序数组中查找某一特定元素的搜索算法。搜索过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。

其实这个二分法是左侧的查询方式,当数据在右侧的时候也会与左侧的类似进行查找,依据还是大于号与小于号。

代码中的注释非常的全,我们可以在debug的过程中一次的看步骤,其中在递归的过程中可以看几个来回就够了,我测试的数据不多,甚至可以直接算的过来。我用的示例是python菜鸟教程的示例,这个示例还是很专业的,希望能给大家带来一定的帮助。

# 返回 x 在 arr 中的索引,如果不存在返回 -1
def binarySearch(arr, l, r, x):
    # 基本判断
    if r >= l:
        mid = int(l + (r - l) / 2)
        # 元素整好的中间位置
        if arr[mid] == x:
            return mid
            # 元素小于中间位置的元素,只需要再比较左边的元素
        elif arr[mid] > x:
            return binarySearch(arr, l, mid - 1, x)
            # 元素大于中间位置的元素,只需要再比较右边的元素
        else:
            return binarySearch(arr, mid + 1, r, x)
    else:
        # 不存在
        return -1
# 测试数组
arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
x = 3
# 函数调用
result = binarySearch(arr, 0, len(arr) - 1, x)
if result != -1:
    print("元素在数组中的索引为:{0}".format(result))
else:
    print("元素不在数组中")

查找过程

首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

算法要求

1.必须采用顺序存储结构。

2.必须按关键字大小有序排列。

比较次数

计算公式:

a< <b(a,b,n,∈ )

当顺序表有n个关键字时:

查找失败时,至少比较a次关键字;查找成功时,最多比较关键字次数是b。

注意:a,b,n均为正整数。

算法复杂度

二分查找的基本思想是将n个元素分成大致相等的两部分,取a[n/2]与x做比较,如果x=a[n/2],则找到x,算法中止;如果x<a[n/2],则只要在数组a的左半部分继续搜索x,如果x>a[n/2],则只要在数组a的右半部搜索x.

时间复杂度即是while循环的次数。

总共有n个元素,

渐渐跟下去就是n,n/2,n/4,....n/2^k(接下来操作元素的剩余个数),其中k就是循环的次数

由于你n/2^k取整后>=1

即令n/2^k=1

可得k=log2n,(是以2为底,n的对数)

所以时间复杂度可以表示O(h)=O(log2n)。

相关文章
|
6天前
|
Python
二分查找变种大赏!Python 中那些让你效率翻倍的搜索绝技!
二分查找是一种高效的搜索算法,适用于有序数组。其基本原理是通过不断比较中间元素来缩小搜索范围,从而快速找到目标值。常见的变种包括查找第一个等于目标值的元素、最后一个等于目标值的元素、第一个大于等于目标值的元素等。这些变种在实际应用中能够显著提高搜索效率,适用于各种复杂场景。
22 9
|
7天前
|
算法 数据处理 开发者
超越传统:Python二分查找的变种策略,让搜索效率再上新台阶!
本文介绍了二分查找及其几种Python实现的变种策略,包括经典二分查找、查找第一个等于给定值的元素、查找最后一个等于给定值的元素以及旋转有序数组的搜索。通过调整搜索条件和边界处理,这些变种策略能够适应更复杂的搜索场景,提升搜索效率和应用灵活性。
21 5
|
7天前
|
搜索推荐 Python
快速排序的 Python 实践:从原理到优化,打造你的排序利器!
本文介绍了 Python 中的快速排序算法,从基本原理、实现代码到优化方法进行了详细探讨。快速排序采用分治策略,通过选择基准元素将数组分为两部分,递归排序。文章还对比了快速排序与冒泡排序的性能,展示了优化前后快速排序的差异。通过这些分析,帮助读者理解快速排序的优势及优化的重要性,从而在实际应用中选择合适的排序算法和优化策略,提升程序性能。
19 1
|
1月前
|
存储 算法 搜索推荐
算法进阶之路:Python 归并排序深度剖析,让数据排序变得艺术起来!
算法进阶之路:Python 归并排序深度剖析,让数据排序变得艺术起来!
68 0
|
2月前
|
Python
Python中几种lambda排序方法
【9月更文挑战第7天】在Python中,`lambda`表达式常用于配合排序函数,实现灵活的数据排序。对于基本列表,可以直接使用`sorted()`进行升序或降序排序;处理复杂对象如字典列表时,通过`lambda`指定键值进行排序;同样地,`lambda`也适用于根据元组的不同位置元素来进行排序。
|
2月前
|
数据处理 Python
python遍历文件夹所有文件按什么排序
python遍历文件夹所有文件按什么排序
|
2月前
|
数据处理 Python
Python遍历文件夹所有文件并按指定排序
Python遍历文件夹所有文件并按指定排序
|
3月前
|
Python
Python魔法:用一行代码实现数据排序
【8月更文挑战第31天】忘掉传统多行排序代码,本文揭秘如何使用一行Python代码快速对数据进行排序,同时深入探讨背后的原理和性能考量。
|
3月前
|
Python
【Leetcode刷题Python】704. 二分查找
解决LeetCode "二分查找" 问题的Python实现代码。
18 0
|
3月前
|
算法 索引 Python
【Leetcode刷题Python】34. 在排序数组中查找元素的第一个和最后一个位置(二分查找)
解决LeetCode "在排序数组中查找元素的第一个和最后一个位置" 问题的方法。第一种方法是使用两次二分查找,首先找到目标值的最左边界,然后找到最右边界。第二种方法是利用Python的list.index()方法,先正序找到起始位置,再逆序找到结束位置,并给出了两种方法的Python实现代码。
60 0