【机器学习】人工智能概述

简介: 【机器学习】人工智能概述

1.人工智能概述


1.1 机器学习、人工智能与深度学习


机器学习和人工智能,深度学习的关系


  1. 人工智能(AI):人工智能是一门研究如何使计算机能够模拟、理解和执行人类智能任务的学科。它的目标是让计算机具备类似于人类的智能水平,可以进行推理、学习、感知和决策。
  2. 机器学习:机器学习是人工智能的一个重要分支,它是让计算机通过从数据中学习和提取模式,自动改进执行特定任务的能力。在传统编程中,程序员需要明确指定计算机应该如何执行任务,而在机器学习中,计算机通过学习数据的规律和特征自主地进行任务执行,这种方式使得计算机在面对新的情况时也能做出合理的决策。
  3. 深度学习:深度学习是机器学习的一种方法,它是通过构建和训练深层神经网络来实现学习和特征提取的过程。这些深层神经网络由多个神经元层组成,允许计算机通过层次化的方式提取和学习数据中的复杂特征。深度学习在图像识别、自然语言处理、语音识别等领域取得了显著的成就,并且在人工智能的快速发展中起到了重要的推动作用。


  • 机器学习是人工智能的一个实现途径
  • 深度学习是机器学习的一个方法发展而来
  • 深度学习是机器学习的一种技术手段,而机器学习是人工智能的一个重要组成部分。在实际应用中,深度学习带来了许多强大的AI模型和系统,使得计算机能够在复杂和大规模的数据中进行高效的学习和推理,从而实现了许多前所未有的人工智能应用。


达特茅斯会议-人工智能的起点


       1956年8月,在美国汉诺斯小镇宁静的达特茅斯学院中,约翰·麦卡锡(John McCarthy),马文·闵斯基(Marvin Minsky,人工智能与认知学专家),克劳德·香农(Claude Shannon,信息论的创始人),艾伦·纽厄尔(Allen Newell,计算机科学家),赫伯特·西蒙(Herbert Simon,诺贝尔经济学奖得主)等科学家正聚在一起,讨论着一个完全不食人间烟火的主题:用机器来模仿人类学习以及其他方面的智能。会议足足开了两个月的时间,虽然大家没有达成普遍的共识,但是却为会议讨论的内容起了一个名字:人工智能。因此,1956年也就成为了人工智能元年。


1.2 机器学习、深度学习能做些什么


       机器学习的应用场景非常多,可以说渗透到了各个行业领域当中。医疗、航空、教育、物流、电商等等领域的各种场景。


  • 用在挖掘、预测领域:
  • 应用场景:店铺销量预测、量化投资、广告推荐、企业客户分类、SQL语句安全检测分类…


  • 用在图像领域:
  • 应用场景:街道交通标志检测、人脸识别等等


  • 用在自然语言处理领域:
  • 应用场景:文本分类、情感分析、自动聊天、文本检测等等


2.什么是机器学习


2.1 定义


 机器学习(Machine Learning)是一种人工智能(AI)的分支,它是通过计算机系统从数据中学习和改进执行特定任务的能力,而无需明确编程指令。换句话说,机器学习使得计算机可以通过数据的模式和规律,自动提取特征和知识,并在未来面对新的数据时做出合理的决策。


       传统的程序设计中,程序员需要编写明确的规则和算法,以指导计算机完成特定任务。但在机器学习中,我们提供给计算机的是一组训练数据,包含输入和对应的输出结果。计算机通过对这些数据进行学习,找到数据中的模式和规律,从而能够在未来的数据中进行预测或分类。


机器学习任务可以分为以下几类:


  1. 监督学习(Supervised Learning):在监督学习中,我们向计算机提供带有标签的训练数据,也就是输入数据和对应的正确输出。计算机通过学习这些数据来建立输入和输出之间的映射关系,从而能够预测未标记数据的输出。
  2. 无监督学习(Unsupervised Learning):在无监督学习中,我们向计算机提供没有标签的训练数据,计算机需要自主地发现数据中的结构和模式。无监督学习常用于聚类、降维和异常检测等任务。
  3. 强化学习(Reinforcement Learning):强化学习是一种通过尝试和错误来学习最佳决策策略的学习方法。在强化学习中,计算机代理根据环境的反馈(奖励或惩罚)不断调整策略,以最大化累积的奖励。


2.2 解释


  • 我们人从大量的日常经验中归纳规律,当面临新的问题的时候,就可以利用以往总结的规律去分析现实状况,采取最佳策略。
  • 从数据(大量的猫和狗的图片)中自动分析获得模型(辨别猫和狗的规律),从而使机器拥有识别猫和狗的能力。基于tensorflow深度学习的猫狗分类识别
  • 从数据(房屋的各种信息)中自动分析获得模型(判断房屋价格的规律),从而使机器拥有预测房屋价格的能力。基于随机森林模型对北京房价进行预测


从历史数据当中获得规律?这些历史数据是怎么的格式?


2.3 数据集构成


  • 结构:特征值+目标值


注:

  • 对于每一行数据我们可以称之为样本
  • 有些数据集可以没有目标值:


3.机器学习算法分类


  • 特征值:猫/狗的图片;目标值:猫/狗-类别
  • 分类问题
  • 特征值:房屋的各个属性信息;目标值:房屋价格-连续型数据
  • 回归问题
  • 特征值:人物的各个属性信息;目标值:无
  • 无监督学习


  • 监督学习(supervised learning)(预测)
  • 定义:输入数据是由输入特征值和目标值所组成。函数的输出可以是一个连续的值(称为回归),或是输出是有限个离散值(称作分类)。
  • 分类 k-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归、神经网络
  • 回归 线性回归、岭回归
  • 无监督学习(unsupervised learning)
  • 定义:输入数据是由输入特征值所组成。
  • 聚类 k-means


4.机器学习开发流程



流程图:


5.学习框架


需明确几点问题:


(1)算法是核心,数据计算是基础

(2)找准定位


大部分复杂模型的算法设计都是算法工程师在做,而我们


  • 分析很多的数据
  • 分析具体的业务
  • 应用常见的算法
  • 特征工程、调参数、优化
  • 我们应该怎么做?
  • 学会分析问题,使用机器学习算法的目的,想要算法完成何种任务
  • 掌握算法基本思想,学会对问题用相应的算法解决
  • 学会利用库或者框架解决问题


当前重要的是掌握一些机器学习算法等技巧,从某个业务领域切入解决问题。


机器学习库与框架:

目录
相关文章
|
1月前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
5天前
|
机器学习/深度学习 传感器 人工智能
人工智能与机器学习:改变未来的力量####
【10月更文挑战第21天】 在本文中,我们将深入探讨人工智能(AI)和机器学习(ML)的基本概念、发展历程及其在未来可能带来的革命性变化。通过分析当前最前沿的技术和应用案例,揭示AI和ML如何正在重塑各行各业,并展望它们在未来十年的潜在影响。 ####
58 27
|
18天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
36 12
|
1月前
|
机器学习/深度学习 人工智能 算法
人工智能与机器学习的融合之旅
【10月更文挑战第37天】本文将探讨AI和机器学习如何相互交织,共同推动技术发展的边界。我们将深入分析这两个概念,了解它们是如何互相影响,以及这种融合如何塑造我们的未来。文章不仅会揭示AI和机器学习之间的联系,还会通过实际案例展示它们如何协同工作,以解决现实世界的问题。
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
84 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
19天前
|
机器学习/深度学习 人工智能 算法
探索人工智能与机器学习的融合之路
在本文中,我们将探讨人工智能(AI)与机器学习(ML)之间的紧密联系以及它们如何共同推动技术革新。我们将深入分析这两种技术的基本概念、发展历程和当前的应用趋势,同时讨论它们面临的挑战和未来的发展方向。通过具体案例研究,我们旨在揭示AI与ML结合的强大潜力,以及这种结合如何为各行各业带来革命性的变化。
34 0
|
1月前
|
机器学习/深度学习 数据采集 人工智能
人工智能与机器学习:解锁数据洞察力的钥匙
人工智能与机器学习:解锁数据洞察力的钥匙
|
7月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
251 14
|
7月前
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
131 1
|
7月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
下一篇
DataWorks