基于Pytorch深度学习的脑肿瘤分类识别

简介: 基于Pytorch深度学习的脑肿瘤分类识别

实验背景


       脑肿瘤是一种严重的疾病,对患者的生命和健康造成了威胁。在脑肿瘤的治疗过程中,准确地识别和分类不同类型的脑肿瘤对于制定个性化的治疗方案和预测患者的病情发展非常重要。


       传统的脑肿瘤分类方法通常依赖于医学专家对影像学图像的视觉解读和分析,但这种方法受限于主观性、经验依赖性和人力成本较高等问题。随着深度学习技术的快速发展,特别是在计算机视觉领域的应用,基于深度学习的脑肿瘤图片识别分类成为了一种有潜力的解决方案。深度学习模型,尤其是卷积神经网络(Convolutional Neural Networks,简称CNN),具备从大规模数据中自动学习特征和进行高度抽象的能力。这使得它们在图像分类和分割任务中具有出色的表现。通过使用深度学习方法,可以将医学影像图像作为输入,训练一个分类器来自动识别和分类不同类型的脑肿瘤,从而为医生提供辅助诊断和治疗决策的依据。基于深度学习的脑肿瘤图片识别分类实验具有重要的研究意义和应用前景。通过该实验,可以评估深度学习模型在脑肿瘤分类任务中的准确性、鲁棒性和可解释性。同时,还可以探索不同深度学习架构、数据增强技术和迁移学习方法对脑肿瘤分类性能的影响。这些研究成果有望为脑肿瘤的早期检测、治疗规划和病情预测提供有力的支持,提高医疗诊断的精确性和效率,最终改善患者的治疗结果和生存率。


实验目的


       本实验旨在利用深度学习方法,特别是卷积神经网络(CNN),进行脑肿瘤图片的识别和分类,以实现以下目标:


1.提高脑肿瘤识别的准确性:通过训练深度学习模型,使其能够准确地识别不同类型的脑肿瘤,包括恶性和良性肿瘤。通过提高准确性,可以辅助医生进行更精确的诊断和制定个性化的治疗方案。

2.探索深度学习模型的鲁棒性:在面对不同的脑肿瘤图像数据集时,评估深度学习模型的鲁棒性和泛化能力。通过研究模型的鲁棒性,可以提高在实际应用中的可靠性,并应对不同来源、不同质量和不同噪声水平的脑肿瘤图像数据。

3.比较不同深度学习架构的性能:尝试使用不同的深度学习架构,如常见的卷积神经网络(CNN)模型和一些最新的架构,比较它们在脑肿瘤分类任务上的性能和效果。通过对比不同模型的表现,可以确定最适合该任务的模型架构,为后续的研究和应用提供参考。

4.评估深度学习模型在临床实践中的应用价值:将深度学习模型应用到真实世界的脑肿瘤影像数据中,并与传统的医学影像诊断方法进行对比。通过评估深度学习模型在临床实践中的准确性和效率,可以为医生提供辅助诊断的工具,并改善脑肿瘤患者的治疗结果和预后。


实验环境


Python3.9


Jupyter notebook


实验过程


1.加载数据


首先导入本次实验用到的第三方库


定义数据集的路径


计算该图像数据集的均值和STD


创建数据加载器,为训练和验证数据集组合转换


使用采样器在训练和验证之间分割数据


配置数据集定义加载器


将数据进行展示


2.训练模型


训练模型配置,初始化模型


开始训练模型


3.模型评估


绘制训练和验证损失


绘制验证精度图


源代码


import numpy as np
from pathlib import Path
import random
import torch
import torchvision
from torchvision import transforms
import tqdm
data_dir = Path("./brain_tumor_dataset")
list(data_dir.iterdir())
# 计算该图像数据集的均值和STD
def calculate_dataset_mean(dataloader): 
    images, labels = next(iter(dataloader))
    return images.mean([0,2,3])
def calculate_dataset_std(dataloader):
    images, labels = next(iter(dataloader))
    return images.std([0,2,3])
raw_dataset_transforms = transforms.Compose([
        transforms.Resize(255), 
        transforms.CenterCrop(225), 
        transforms.ToTensor()
    ])
raw_dataset = torchvision.datasets.ImageFolder(root = str(data_dir), transform=raw_dataset_transforms)
raw_dataloader = torch.utils.data.DataLoader(raw_dataset, batch_size=len(raw_dataset))
print(f"mean = {calculate_dataset_mean(raw_dataloader)} and std = {calculate_dataset_std(raw_dataloader)}")
'''
创建数据加载器
为训练和验证数据集组合转换
创建应用了适当转换的数据集
使用数据集创建数据加载程序
'''
# 数据集配置
CLASSES = ["no","yes"]
NUMBER_OF_CLASSES = len(CLASSES)
SHUFFLE = True
VALIDATION_SIZE = 0.2
RESIZE = 64
# 为训练和验证数据集组合图像转换
normalize = transforms.Normalize(
        mean=calculate_dataset_mean(raw_dataloader),
        std=calculate_dataset_std(raw_dataloader),
    )
training_transform = transforms.Compose([
        transforms.RandomRotation(30),
        transforms.Resize(RESIZE),
        transforms.CenterCrop(RESIZE),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        normalize,
] )
validation_transform = transforms.Compose(
    [transforms.Resize(RESIZE),
     transforms.CenterCrop(RESIZE),         
     transforms.ToTensor(),
     normalize,
    ])
# 创建数据集并应用相关转换
training_dataset = torchvision.datasets.ImageFolder(
    root = str(data_dir),
    transform = training_transform,
)
validation_dataset = torchvision.datasets.ImageFolder(
    root = str(data_dir),
    transform = validation_transform
)
# 检查数据集规范化
# 归一化后,均值应接近0,std应接近1
normalized_dataloader = torch.utils.data.DataLoader(
    validation_dataset, 
    batch_size=len(validation_dataset),
    )
print(f"mean = {calculate_dataset_mean(normalized_dataloader)}",
      f"std = {calculate_dataset_std(normalized_dataloader)}")
# 使用采样器在训练和验证之间分割数据
split = int(np.floor(len(training_dataset) * VALIDATION_SIZE))
indices = list(range(len(training_dataset)))
if SHUFFLE:
    random.shuffle(indices)
validation_indices, training_indices = indices[: split], indices[split :]
training_sampler = torch.utils.data.sampler.SubsetRandomSampler(training_indices)
validation_sampler = torch.utils.data.sampler.SubsetRandomSampler(validation_indices)
# 数据加载器配置
BATCH_SIZE = 4
NUMBER_OF_WORKERS = 2
PIN_MEMORY = False
# 创建数据加载器
training_dataloader = torch.utils.data.DataLoader(
    training_dataset, 
    batch_size=BATCH_SIZE, 
    sampler=training_sampler,
    num_workers=NUMBER_OF_WORKERS, 
    pin_memory=PIN_MEMORY,
    )
validation_dataloader = torch.utils.data.DataLoader(
    training_dataset, 
    batch_size=BATCH_SIZE, 
    sampler=validation_sampler,
    num_workers=NUMBER_OF_WORKERS, 
    pin_memory=PIN_MEMORY,
    )
import matplotlib.pyplot as plt
%matplotlib inline
# 展示图片
for images, labels in training_dataloader:
    fig = plt.figure(figsize = (14, 7))
    for i in range(BATCH_SIZE):
        ax = fig.add_subplot(2, 4, i + 1, xticks = [], yticks = [])
        ax.set_xlabel(f"cancer = {CLASSES[labels[i]]}")
        image = images[i][0, :, :]
        plt.imshow(image)
    break
# 训练模型配置
MODEL_NAME = "resnet18"
WEIGHTS = "DEFAULT"
LEARNING_RATE = 0.0001
MOMENTUM = 0.9
NUMBER_OF_EPOCHS = 10
MODEL_SAVE_PATH = "model.pt"
# 初始化模型
model = torchvision.models.get_model(MODEL_NAME, weights=WEIGHTS)
model.fc = torch.nn.Linear(512, 2)
# 选择一个损失函数和一个优化函数
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LEARNING_RATE, momentum=MOMENTUM)
# 开始训练模型
# 存储训练过程状态的地方
training_loss_history = []
validation_loss_history = []
validation_accuracy_history = []
# 训练和验证循环
for epoch in range(NUMBER_OF_EPOCHS):
    model.train()
    training_step_loss = []
    print(f"Epoch {epoch + 1}/{NUMBER_OF_EPOCHS}")
    for data in tqdm.tqdm(training_dataloader, desc="training"):
        features, labels = data
        optimizer.zero_grad()
        outputs = model(features)
        training_loss = criterion(outputs, labels)
        training_loss.backward()
        optimizer.step()
        training_step_loss.append(training_loss.item())
    training_epoch_loss = sum(training_step_loss)/len(training_step_loss)
    training_loss_history.append(training_epoch_loss)
    model.eval()
    validation_step_loss = []
    correct_predictions = 0 
    for data in tqdm.tqdm(validation_dataloader, desc="validating"):
        features, labels = data
        outputs = model(features)
        correct_predictions += torch.sum(torch.argmax(outputs, axis=1)==labels)
        validation_loss = criterion(outputs, labels)
        validation_step_loss.append(validation_loss.item())
    validation_epoch_loss = sum(validation_step_loss)/len(validation_step_loss)
    validation_loss_history.append(validation_epoch_loss)
    validation_epoch_accuracy = correct_predictions / (len(validation_dataloader) * BATCH_SIZE)
    print(f"Training Loss: {training_epoch_loss:.4f},"
          f"Validation Loss: {validation_epoch_loss:.4f}," 
          f"Validation Acc: {validation_epoch_accuracy:.4f}")
    # 保存模型
    if epoch==0 or validation_epoch_accuracy > max(validation_accuracy_history):
        print("Validation loss improved, saving checkpoint.")
        torch.save({
                'epoch': epoch,
                'model_state_dict': model.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'loss': validation_epoch_loss,
                }, MODEL_SAVE_PATH)
        print("Checkpoint saved")
    validation_accuracy_history.append(validation_epoch_accuracy)
print('Finished Training')
# 绘制训练和验证损失
plt.plot(training_loss_history, label='training_loss')
plt.plot(validation_loss_history,label='validation_loss')
plt.legend()
plt.show
# 绘制验证精度图
plt.plot(validation_accuracy_history, label='validation accuracy')
plt.legend()
plt.show
目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 PyTorch
PyTorch深度学习 ? 带你从入门到精通!!!
🌟 蒋星熠Jaxonic,深度学习探索者。三年深耕PyTorch,从基础到部署,分享模型构建、GPU加速、TorchScript优化及PyTorch 2.0新特性,助力AI开发者高效进阶。
PyTorch深度学习 ? 带你从入门到精通!!!
|
机器学习/深度学习 编解码 人工智能
人脸表情[七种表情]数据集(15500张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
本数据集包含15,500张已划分、已标注的人脸表情图像,覆盖惊讶、恐惧、厌恶、高兴、悲伤、愤怒和中性七类表情,适用于YOLO系列等深度学习模型的分类与检测任务。数据集结构清晰,分为训练集与测试集,支持多种标注格式转换,适用于人机交互、心理健康、驾驶监测等多个领域。
|
2月前
|
机器学习/深度学习 人工智能 文字识别
中药材图像识别数据集(100类,9200张)|适用于YOLO系列深度学习分类检测任务
本数据集包含9200张中药材图像,覆盖100种常见品类,已标注并划分为训练集与验证集,支持YOLO等深度学习模型。适用于中药分类、目标检测、AI辅助识别及教学应用,助力中医药智能化发展。
|
3月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
159 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
4月前
|
机器学习/深度学习 人工智能 监控
河道塑料瓶识别标准数据集 | 科研与项目必备(图片已划分、已标注)| 适用于YOLO系列深度学习分类检测任务【数据集分享】
随着城市化进程加快和塑料制品使用量增加,河道中的塑料垃圾问题日益严重。塑料瓶作为河道漂浮垃圾的主要类型,不仅破坏水体景观,还威胁水生生态系统的健康。传统的人工巡查方式效率低、成本高,难以满足实时监控与治理的需求。
|
4月前
|
机器学习/深度学习 传感器 人工智能
火灾火焰识别数据集(2200张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
在人工智能和计算机视觉的快速发展中,火灾检测与火焰识别逐渐成为智慧城市、公共安全和智能监控的重要研究方向。一个高质量的数据集往往是推动相关研究的核心基础。本文将详细介绍一个火灾火焰识别数据集,该数据集共包含 2200 张图片,并已按照 训练集(train)、验证集(val)、测试集(test) 划分,同时配有对应的标注文件,方便研究者快速上手模型训练与评估。
火灾火焰识别数据集(2200张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
|
4月前
|
机器学习/深度学习 人工智能 自动驾驶
7种交通场景数据集(千张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
在智能交通与自动驾驶技术快速发展的今天,如何高效、准确地感知道路环境已经成为研究与应用的核心问题。车辆、行人和交通信号灯作为城市交通系统的关键元素,对道路安全与交通效率具有直接影响。然而,真实道路场景往往伴随 复杂光照、遮挡、多目标混杂以及交通信号状态多样化 等挑战,使得视觉识别与检测任务难度显著增加。
|
4月前
|
机器学习/深度学习 人工智能 监控
坐姿标准好坏姿态数据集(图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
坐姿标准好坏姿态数据集的发布,填补了计算机视觉领域在“细分健康行为识别”上的空白。它不仅具有研究价值,更在实际应用层面具备广阔前景。从青少年的健康教育,到办公室的智能提醒,再到驾驶员的安全监控和康复训练,本数据集都能发挥巨大的作用。
坐姿标准好坏姿态数据集(图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
|
4月前
|
机器学习/深度学习 编解码 人工智能
102类农业害虫数据集(20000张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
在现代农业发展中,病虫害监测与防治 始终是保障粮食安全和提高农作物产量的关键环节。传统的害虫识别主要依赖人工观察与统计,不仅效率低下,而且容易受到主观经验、环境条件等因素的影响,导致识别准确率不足。
|
3月前
|
机器学习/深度学习 数据采集 编解码
基于深度学习分类的时相关MIMO信道的递归CSI量化(Matlab代码实现)
基于深度学习分类的时相关MIMO信道的递归CSI量化(Matlab代码实现)
159 1

热门文章

最新文章

推荐镜像

更多