基于光流法的车辆检测计数算法matlab仿真,对比Horn-Schunck光流和Lucas-Kanade光流

简介: 基于光流法的车辆检测计数算法matlab仿真,对比Horn-Schunck光流和Lucas-Kanade光流

1.算法运行效果图预览
HS光流

1.jpeg
2.jpeg
3.jpeg

LK光流

4.jpeg
5.jpeg
6.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
光流法是一种用于估计图像中像素或特征点运动的方法。在车辆检测与计数应用中,光流法可用于检测图像中车辆的运动,从而进行计数。这里我们将详细介绍Horn-Schunck光流法和Lucas-Kanade光流法,并对比它们在车辆检测计数应用中的表现。

3.1 Horn-Schunck光流法

   Horn-Schunck光流法是基于全局平滑约束的一种光流估计方法。它假设图像中相邻像素的运动矢量是平滑的。因此,它通过最小化全局能量函数来估计光流。Horn-Schunck光流法的能量函数可表示为:

   E_HS = ∫∫[(I_x * u + I_y * v + I_t)^2 + α^2 * (||∇u||^2 + ||∇v||^2)] dx dy

  其中,I_x 和 I_y 分别表示图像在x和y方向上的梯度;u 和 v 分别表示光流矢量在x和y方向上的分量;I_t 表示图像的时间导数;α 是平滑参数,用于控制平滑项和数据项的权重。

  通过最小化上述能量函数,可以得到光流矢量场 (u, v)。在实际应用中,通常采用迭代方法来求解该能量函数的最小值。

3.2 Lucas-Kanade光流法

   不同于Horn-Schunck光流法,Lucas-Kanade光流法是基于局部约束的光流估计方法。它假设在一个小邻域内,所有像素具有相同的运动矢量。因此,Lucas-Kanade方法通过最小化邻域内的像素误差来估计光流。Lucas-Kanade光流法的目标函数可表示为:

   E_LK = ∑_i[(I_i(x+u, y+v) - I_i(x, y))^2]

   其中,I_i 表示邻域内的像素强度;(x, y) 表示像素坐标;(u, v) 表示光流矢量。通过对目标函数进行泰勒展开,并求解线性方程组,可以得到光流矢量 (u, v)。
   在车辆检测计数应用中,Horn-Schunck光流法和Lucas-Kanade光流法各有优缺点。Horn-Schunck方法通过全局平滑约束能够获得较为鲁棒的光流估计,但在车辆边缘和细节处的估计可能不够准确。而Lucas-Kanade方法能够在局部范围内更准确地估计光流,但对于全局运动的估计可能较差。因此,在实际应用中,可以根据具体场景和需求选择合适的光流方法。

   为了进一步提高车辆检测计数的准确性,还可以结合其他计算机视觉技术,如背景建模、边缘检测、特征提取等。这些技术可以帮助更好地分离车辆与背景,准确地提取车辆边缘和特征,从而提高光流法估计的准确性。同时,还可以通过多帧图像间的关联和跟踪技术,实现车辆轨迹的连续检测和计数。这有助于克服光照变化、遮挡等挑战,提高车辆检测计数系统的鲁棒性和准确性。

4.部分核心程序

```while ~isDone(hReader)
pause(0.1);
% 从视频文件中读取视频帧
frame = step(hReader);
% 将图像转换为灰度图
Frame_gray = rgb2gray(frame);

%1 计算光流场矢量
flow       = estimateFlow(Flow_type,Frame_gray);
% 每隔5行5列选择一个像素点,绘制它的光流图,20表示将光流幅值放大20倍
lines      = [xpos, ypos, xpos+40*real(flow.Vx(locs)), ypos+40*imag(flow.Vy(locs))];
% 将光流矢量添加到视频帧上
vector     = step(hShape2, frame, lines);

.................................................................
% 统计汽车数量
Num_car    = int32(sum(Checks));
bbox(~Checks, :) = int32(-1);
% 汽车边框
result     = step(hShape1, frame, bbox);

% 在视频帧添加文本显示汽车数量
result = insertText(result,[1 1],sprintf('%d',Num_car));
subplot(221);
imshow(frame);title('原视频');

subplot(222);
imshow(vector);title('光流提取');

subplot(223);
imshow(Get_car); title('目标提取');

subplot(224);
imshow(result);   title('目标提取');

end
%释放视频
release(hReader);

```

相关文章
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
11天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
11天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
24天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
11天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
11天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
27 3
|
21天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
23天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
27天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。