基于光流法的车辆检测计数算法matlab仿真,对比Horn-Schunck光流和Lucas-Kanade光流

简介: 基于光流法的车辆检测计数算法matlab仿真,对比Horn-Schunck光流和Lucas-Kanade光流

1.算法运行效果图预览
HS光流

1.jpeg
2.jpeg
3.jpeg

LK光流

4.jpeg
5.jpeg
6.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
光流法是一种用于估计图像中像素或特征点运动的方法。在车辆检测与计数应用中,光流法可用于检测图像中车辆的运动,从而进行计数。这里我们将详细介绍Horn-Schunck光流法和Lucas-Kanade光流法,并对比它们在车辆检测计数应用中的表现。

3.1 Horn-Schunck光流法

   Horn-Schunck光流法是基于全局平滑约束的一种光流估计方法。它假设图像中相邻像素的运动矢量是平滑的。因此,它通过最小化全局能量函数来估计光流。Horn-Schunck光流法的能量函数可表示为:

   E_HS = ∫∫[(I_x * u + I_y * v + I_t)^2 + α^2 * (||∇u||^2 + ||∇v||^2)] dx dy

  其中,I_x 和 I_y 分别表示图像在x和y方向上的梯度;u 和 v 分别表示光流矢量在x和y方向上的分量;I_t 表示图像的时间导数;α 是平滑参数,用于控制平滑项和数据项的权重。

  通过最小化上述能量函数,可以得到光流矢量场 (u, v)。在实际应用中,通常采用迭代方法来求解该能量函数的最小值。

3.2 Lucas-Kanade光流法

   不同于Horn-Schunck光流法,Lucas-Kanade光流法是基于局部约束的光流估计方法。它假设在一个小邻域内,所有像素具有相同的运动矢量。因此,Lucas-Kanade方法通过最小化邻域内的像素误差来估计光流。Lucas-Kanade光流法的目标函数可表示为:

   E_LK = ∑_i[(I_i(x+u, y+v) - I_i(x, y))^2]

   其中,I_i 表示邻域内的像素强度;(x, y) 表示像素坐标;(u, v) 表示光流矢量。通过对目标函数进行泰勒展开,并求解线性方程组,可以得到光流矢量 (u, v)。
   在车辆检测计数应用中,Horn-Schunck光流法和Lucas-Kanade光流法各有优缺点。Horn-Schunck方法通过全局平滑约束能够获得较为鲁棒的光流估计,但在车辆边缘和细节处的估计可能不够准确。而Lucas-Kanade方法能够在局部范围内更准确地估计光流,但对于全局运动的估计可能较差。因此,在实际应用中,可以根据具体场景和需求选择合适的光流方法。

   为了进一步提高车辆检测计数的准确性,还可以结合其他计算机视觉技术,如背景建模、边缘检测、特征提取等。这些技术可以帮助更好地分离车辆与背景,准确地提取车辆边缘和特征,从而提高光流法估计的准确性。同时,还可以通过多帧图像间的关联和跟踪技术,实现车辆轨迹的连续检测和计数。这有助于克服光照变化、遮挡等挑战,提高车辆检测计数系统的鲁棒性和准确性。

4.部分核心程序

```while ~isDone(hReader)
pause(0.1);
% 从视频文件中读取视频帧
frame = step(hReader);
% 将图像转换为灰度图
Frame_gray = rgb2gray(frame);

%1 计算光流场矢量
flow       = estimateFlow(Flow_type,Frame_gray);
% 每隔5行5列选择一个像素点,绘制它的光流图,20表示将光流幅值放大20倍
lines      = [xpos, ypos, xpos+40*real(flow.Vx(locs)), ypos+40*imag(flow.Vy(locs))];
% 将光流矢量添加到视频帧上
vector     = step(hShape2, frame, lines);

.................................................................
% 统计汽车数量
Num_car    = int32(sum(Checks));
bbox(~Checks, :) = int32(-1);
% 汽车边框
result     = step(hShape1, frame, bbox);

% 在视频帧添加文本显示汽车数量
result = insertText(result,[1 1],sprintf('%d',Num_car));
subplot(221);
imshow(frame);title('原视频');

subplot(222);
imshow(vector);title('光流提取');

subplot(223);
imshow(Get_car); title('目标提取');

subplot(224);
imshow(result);   title('目标提取');

end
%释放视频
release(hReader);

```

相关文章
|
27天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
27天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
134 68
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
1月前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
1月前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
2月前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
199 80
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1月前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
2月前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
2月前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。